用水下辐射噪声对船舶进行分类

J. G. Lourens
{"title":"用水下辐射噪声对船舶进行分类","authors":"J. G. Lourens","doi":"10.1109/COMSIG.1988.49315","DOIUrl":null,"url":null,"abstract":"Concentrating mainly on the signal processing and physical models behind the algorithms used to classify ships by their underwater-radiated noise, the physical model for cavitation is expanded to include the losses by acoustical radiation and the heat transfer from the vapor to the fluid. The resulting equation allows one to find the characteristics of cavitation through simulation. Five algorithms for estimating the propeller speed have been found. The performance of the three most promising ones are judged with respect to the ratio of the expected value to the variance of the estimator. A complete Bayes hypothesis test on second-order autoregressive power density spectrum poles are then described for determining the kind of propulsion a vessel uses. The nature of gearbox noise is described, and the cepstrum is proposed as an algorithm to detect this kind of noise.<<ETX>>","PeriodicalId":339020,"journal":{"name":"COMSIG 88@m_Southern African Conference on Communications and Signal Processing. Proceedings","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Classification of ships using underwater radiated noise\",\"authors\":\"J. G. Lourens\",\"doi\":\"10.1109/COMSIG.1988.49315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concentrating mainly on the signal processing and physical models behind the algorithms used to classify ships by their underwater-radiated noise, the physical model for cavitation is expanded to include the losses by acoustical radiation and the heat transfer from the vapor to the fluid. The resulting equation allows one to find the characteristics of cavitation through simulation. Five algorithms for estimating the propeller speed have been found. The performance of the three most promising ones are judged with respect to the ratio of the expected value to the variance of the estimator. A complete Bayes hypothesis test on second-order autoregressive power density spectrum poles are then described for determining the kind of propulsion a vessel uses. The nature of gearbox noise is described, and the cepstrum is proposed as an algorithm to detect this kind of noise.<<ETX>>\",\"PeriodicalId\":339020,\"journal\":{\"name\":\"COMSIG 88@m_Southern African Conference on Communications and Signal Processing. Proceedings\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"COMSIG 88@m_Southern African Conference on Communications and Signal Processing. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSIG.1988.49315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMSIG 88@m_Southern African Conference on Communications and Signal Processing. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1988.49315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

主要集中于通过水下辐射噪声对船舶进行分类的算法背后的信号处理和物理模型,将空化的物理模型扩展到包括声辐射损失和从蒸汽到流体的热量传递。由此得到的方程可以通过模拟找出空化的特征。找到了五种估计螺旋桨速度的算法。根据期望值与估计器方差的比值来判断三个最有希望的估计器的性能。然后描述了二阶自回归功率密度谱极点上的完整贝叶斯假设检验,以确定船舶使用的推进类型。描述了齿轮箱噪声的性质,提出了倒谱作为一种检测这类噪声的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of ships using underwater radiated noise
Concentrating mainly on the signal processing and physical models behind the algorithms used to classify ships by their underwater-radiated noise, the physical model for cavitation is expanded to include the losses by acoustical radiation and the heat transfer from the vapor to the fluid. The resulting equation allows one to find the characteristics of cavitation through simulation. Five algorithms for estimating the propeller speed have been found. The performance of the three most promising ones are judged with respect to the ratio of the expected value to the variance of the estimator. A complete Bayes hypothesis test on second-order autoregressive power density spectrum poles are then described for determining the kind of propulsion a vessel uses. The nature of gearbox noise is described, and the cepstrum is proposed as an algorithm to detect this kind of noise.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信