基于制动轮廓再生的闭环快速扩展随机树采样恢复

Niclas Evestedt, Daniel Axehill, M. Trincavelli, F. Gustafsson
{"title":"基于制动轮廓再生的闭环快速扩展随机树采样恢复","authors":"Niclas Evestedt, Daniel Axehill, M. Trincavelli, F. Gustafsson","doi":"10.1109/IVS.2015.7225670","DOIUrl":null,"url":null,"abstract":"In this paper an extension to the sampling based motion planning framework CL-RRT is presented. The framework uses a system model and a stabilizing controller to sample the perceived environment and build a tree of possible trajectories that are evaluated for execution. Complex system models and constraints are easily handled by a forward simulation making the framework widely applicable. To increase operational safety we propose a sampling recovery scheme that performs a deterministic brake profile regeneration using collision information from the forward simulation. This greatly increases the number of safe trajectories and also reduces the number of samples that produce infeasible results. We apply the framework to a Scania G480 mining truck and evaluate the algorithm in a simple yet challenging obstacle course and show that our approach greatly increases the number of feasible paths available for execution.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sampling recovery for closed loop rapidly expanding random tree using brake profile regeneration\",\"authors\":\"Niclas Evestedt, Daniel Axehill, M. Trincavelli, F. Gustafsson\",\"doi\":\"10.1109/IVS.2015.7225670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an extension to the sampling based motion planning framework CL-RRT is presented. The framework uses a system model and a stabilizing controller to sample the perceived environment and build a tree of possible trajectories that are evaluated for execution. Complex system models and constraints are easily handled by a forward simulation making the framework widely applicable. To increase operational safety we propose a sampling recovery scheme that performs a deterministic brake profile regeneration using collision information from the forward simulation. This greatly increases the number of safe trajectories and also reduces the number of samples that produce infeasible results. We apply the framework to a Scania G480 mining truck and evaluate the algorithm in a simple yet challenging obstacle course and show that our approach greatly increases the number of feasible paths available for execution.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文对基于采样的运动规划框架CL-RRT进行了扩展。该框架使用系统模型和稳定控制器对感知环境进行采样,并构建可能的轨迹树,以评估其执行情况。复杂的系统模型和约束很容易通过前向仿真处理,使得该框架具有广泛的适用性。为了提高操作安全性,我们提出了一种采样恢复方案,该方案使用来自前向模拟的碰撞信息执行确定性制动轮廓再生。这大大增加了安全轨迹的数量,也减少了产生不可行结果的样本数量。我们将该框架应用于斯堪尼亚G480采矿卡车,并在一个简单但具有挑战性的障碍赛道中评估该算法,并表明我们的方法大大增加了可用于执行的可行路径的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling recovery for closed loop rapidly expanding random tree using brake profile regeneration
In this paper an extension to the sampling based motion planning framework CL-RRT is presented. The framework uses a system model and a stabilizing controller to sample the perceived environment and build a tree of possible trajectories that are evaluated for execution. Complex system models and constraints are easily handled by a forward simulation making the framework widely applicable. To increase operational safety we propose a sampling recovery scheme that performs a deterministic brake profile regeneration using collision information from the forward simulation. This greatly increases the number of safe trajectories and also reduces the number of samples that produce infeasible results. We apply the framework to a Scania G480 mining truck and evaluate the algorithm in a simple yet challenging obstacle course and show that our approach greatly increases the number of feasible paths available for execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信