基于引导自我训练的半监督学习欺诈检测

Awanish Kumar, Soumyadeep Ghosh, Janu Verma
{"title":"基于引导自我训练的半监督学习欺诈检测","authors":"Awanish Kumar, Soumyadeep Ghosh, Janu Verma","doi":"10.1145/3533271.3561783","DOIUrl":null,"url":null,"abstract":"Semi supervised learning has attracted attention of AI researchers in the recent past, especially after the advent of deep learning methods and their success in several real world applications. Most deep learning models require large amounts of labelled data, which is expensive to obtain. Fraud detection is a very important problem for several industries and large amount of data is often available. However, obtaining labelled data is cumbersome and hence semi-supervised learning is perfectly positioned to aid us in building robust and accurate supervised models. In this work, we consider different kinds of fraud detection paradigms and show that a self-training based semi-supervised learning approach can produce significant improvements over a model that has been training on a limited set of labelled data. We propose a novel self-training approach by using a guided sharpening technique using a pair of autoencoders which provide useful cues for incorporating unlabelled data in the training process. We conduct thorough experiments on three different real world databases and analysis to showcase the effectiveness of the approach. On the elliptic bitcoin fraud dataset, we show that utilizing unlabelled data improves the F1 score of the model trained on limited labelled data by around 10%.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided Self-Training based Semi-Supervised Learning for Fraud Detection\",\"authors\":\"Awanish Kumar, Soumyadeep Ghosh, Janu Verma\",\"doi\":\"10.1145/3533271.3561783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi supervised learning has attracted attention of AI researchers in the recent past, especially after the advent of deep learning methods and their success in several real world applications. Most deep learning models require large amounts of labelled data, which is expensive to obtain. Fraud detection is a very important problem for several industries and large amount of data is often available. However, obtaining labelled data is cumbersome and hence semi-supervised learning is perfectly positioned to aid us in building robust and accurate supervised models. In this work, we consider different kinds of fraud detection paradigms and show that a self-training based semi-supervised learning approach can produce significant improvements over a model that has been training on a limited set of labelled data. We propose a novel self-training approach by using a guided sharpening technique using a pair of autoencoders which provide useful cues for incorporating unlabelled data in the training process. We conduct thorough experiments on three different real world databases and analysis to showcase the effectiveness of the approach. On the elliptic bitcoin fraud dataset, we show that utilizing unlabelled data improves the F1 score of the model trained on limited labelled data by around 10%.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数深度学习模型需要大量的标记数据,而这些数据的获取成本很高。欺诈检测对于许多行业来说都是一个非常重要的问题,通常需要大量的数据。然而,获得标记数据是很麻烦的,因此半监督学习是帮助我们建立鲁棒和准确的监督模型的完美定位。在这项工作中,我们考虑了不同类型的欺诈检测范式,并表明基于自我训练的半监督学习方法可以比在有限的标记数据集上训练的模型产生显著的改进。我们提出了一种新的自我训练方法,通过使用一对自动编码器的引导锐化技术,为在训练过程中合并未标记数据提供有用的线索。我们在三个不同的真实世界数据库和分析上进行了彻底的实验,以展示该方法的有效性。在椭圆比特币欺诈数据集上,我们表明使用未标记数据将有限标记数据训练的模型的F1分数提高了约10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guided Self-Training based Semi-Supervised Learning for Fraud Detection
Semi supervised learning has attracted attention of AI researchers in the recent past, especially after the advent of deep learning methods and their success in several real world applications. Most deep learning models require large amounts of labelled data, which is expensive to obtain. Fraud detection is a very important problem for several industries and large amount of data is often available. However, obtaining labelled data is cumbersome and hence semi-supervised learning is perfectly positioned to aid us in building robust and accurate supervised models. In this work, we consider different kinds of fraud detection paradigms and show that a self-training based semi-supervised learning approach can produce significant improvements over a model that has been training on a limited set of labelled data. We propose a novel self-training approach by using a guided sharpening technique using a pair of autoencoders which provide useful cues for incorporating unlabelled data in the training process. We conduct thorough experiments on three different real world databases and analysis to showcase the effectiveness of the approach. On the elliptic bitcoin fraud dataset, we show that utilizing unlabelled data improves the F1 score of the model trained on limited labelled data by around 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信