深海环境噪声的垂直相关性和方向性

Qiulong Yang, Kunde Yang, Ran Cao, Liya Xu, Ying Zhang, Hong Liu, Chunlong Huang, J. Li
{"title":"深海环境噪声的垂直相关性和方向性","authors":"Qiulong Yang, Kunde Yang, Ran Cao, Liya Xu, Ying Zhang, Hong Liu, Chunlong Huang, J. Li","doi":"10.1109/OCEANSKOBE.2018.8559327","DOIUrl":null,"url":null,"abstract":"Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent in deep ocean. In this paper, a standard ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution in South China Sea. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. Furthermore, the vertical characteristics of low-frequency ambient noise field were compared with the Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed in deep ocean.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vertical Correlation and Directionality of Ambient Noise in Deep Ocean\",\"authors\":\"Qiulong Yang, Kunde Yang, Ran Cao, Liya Xu, Ying Zhang, Hong Liu, Chunlong Huang, J. Li\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent in deep ocean. In this paper, a standard ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution in South China Sea. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. Furthermore, the vertical characteristics of low-frequency ambient noise field were compared with the Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed in deep ocean.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

风驱动噪声源和远距离船舶噪声源可能在一定程度上同时显著影响深海总噪声场的空间特征。本文采用标准射线法和抛物方程解法,对距离相关深海环境下的低频环境噪声场进行了建模。利用国家环境预报中心(NCEP)和志愿观测系统(VOS)的再分析数据库对南海地区环境噪声源强度和分布进行了模拟。分析了三种风速条件下的空间垂直方向性和相关性。此外,将低频环境噪声场的垂向特征与Cron/Sherman深水噪声场相干函数进行了比较。仿真结果表明,该方法与深海垂直线阵实验测量结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertical Correlation and Directionality of Ambient Noise in Deep Ocean
Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent in deep ocean. In this paper, a standard ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution in South China Sea. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. Furthermore, the vertical characteristics of low-frequency ambient noise field were compared with the Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed in deep ocean.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信