考虑光谱反问题神经网络中重要输入特征选择的相互关联

N. O. Shchurov, I. Isaev, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko
{"title":"考虑光谱反问题神经网络中重要输入特征选择的相互关联","authors":"N. O. Shchurov, I. Isaev, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko","doi":"10.22323/1.429.0026","DOIUrl":null,"url":null,"abstract":"In the neural network solution of many physical problems, it becomes necessary to reduce the dimension of the input data in order to achieve a more accurate and stable solution while reducing computational complexity. When solving the inverse problem of spectroscopy, high multicollinearity between input features is often observed, as spectral lines may be much wider than the spectral channel width. This leads to the need to use a feature selection method that takes into account this characteristic. The method discussed in this article is based on iterative selection of input features with the highest Pearson correlation with the target variable and elimination of input features with high cross-correlation. This study compares the quality of the neural network solution to the problem of determining the concentration of heavy metal ions in water by Raman and absorption spectra on the full feature set and on its subsets produced by the considered feature selection method and by conventional methods of selection of significant input features.","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taking into Account Mutual Correlations during Selection of Significant Input Features in Neural Network Solution of Inverse Problems of Spectroscopy\",\"authors\":\"N. O. Shchurov, I. Isaev, S. Burikov, T. Dolenko, K. Laptinskiy, S. Dolenko\",\"doi\":\"10.22323/1.429.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the neural network solution of many physical problems, it becomes necessary to reduce the dimension of the input data in order to achieve a more accurate and stable solution while reducing computational complexity. When solving the inverse problem of spectroscopy, high multicollinearity between input features is often observed, as spectral lines may be much wider than the spectral channel width. This leads to the need to use a feature selection method that takes into account this characteristic. The method discussed in this article is based on iterative selection of input features with the highest Pearson correlation with the target variable and elimination of input features with high cross-correlation. This study compares the quality of the neural network solution to the problem of determining the concentration of heavy metal ions in water by Raman and absorption spectra on the full feature set and on its subsets produced by the considered feature selection method and by conventional methods of selection of significant input features.\",\"PeriodicalId\":262901,\"journal\":{\"name\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.429.0026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多物理问题的神经网络求解中,为了在降低计算复杂度的同时获得更准确、更稳定的解,需要对输入数据进行降维处理。在求解光谱反问题时,由于谱线可能比光谱通道宽度宽得多,因此经常观察到输入特征之间的高度多重共线性。这导致需要使用考虑到该特性的特征选择方法。本文讨论的方法是基于迭代选择与目标变量Pearson相关性最高的输入特征,并消除高互相关的输入特征。本研究比较了神经网络解决方案的质量,以确定水中重金属离子的浓度的问题,通过拉曼和吸收光谱在完整的特征集和其子集上由考虑的特征选择方法和传统的重要输入特征选择方法产生的特征集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taking into Account Mutual Correlations during Selection of Significant Input Features in Neural Network Solution of Inverse Problems of Spectroscopy
In the neural network solution of many physical problems, it becomes necessary to reduce the dimension of the input data in order to achieve a more accurate and stable solution while reducing computational complexity. When solving the inverse problem of spectroscopy, high multicollinearity between input features is often observed, as spectral lines may be much wider than the spectral channel width. This leads to the need to use a feature selection method that takes into account this characteristic. The method discussed in this article is based on iterative selection of input features with the highest Pearson correlation with the target variable and elimination of input features with high cross-correlation. This study compares the quality of the neural network solution to the problem of determining the concentration of heavy metal ions in water by Raman and absorption spectra on the full feature set and on its subsets produced by the considered feature selection method and by conventional methods of selection of significant input features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信