基于数字双驱动架构的URLLC系统的ris授权MEC

Sravani Kurma, Keshav Singh, Mayur Katwe, S. Mumtaz, Chih-Peng Li
{"title":"基于数字双驱动架构的URLLC系统的ris授权MEC","authors":"Sravani Kurma, Keshav Singh, Mayur Katwe, S. Mumtaz, Chih-Peng Li","doi":"10.1109/INFOCOMWKSHPS57453.2023.10226132","DOIUrl":null,"url":null,"abstract":"This paper investigates a digital twin (DT) enabled reconfigurable intelligent surface (RIS)-aided mobile edge computing (MEC) system under given constraints on ultra-reliable low latency communication (URLLC). In particular, we focus on the problem of total end-to-end (e2e) latency minimization for the considered system under the joint optimization of beamforming design at RIS, power and bandwidth allocation, processing rates, and task offloading parameters using DT architecture. To tackle the formulated non-convex optimization problem, we first model it as a Markov decision process (MDP), and later we adopt a deep reinforcement learning (DRL) algorithm to solve it effectively. Simulation results confirm that the proposed DT-enabled resource allocation scheme for the RIS-empowered MEC network achieves up to 60% lower transmission delay and 20% lower energy consumption compared to without RIS scheme.","PeriodicalId":354290,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"9 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIS-Empowered MEC for URLLC Systems with Digital-Twin-Driven Architecture\",\"authors\":\"Sravani Kurma, Keshav Singh, Mayur Katwe, S. Mumtaz, Chih-Peng Li\",\"doi\":\"10.1109/INFOCOMWKSHPS57453.2023.10226132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a digital twin (DT) enabled reconfigurable intelligent surface (RIS)-aided mobile edge computing (MEC) system under given constraints on ultra-reliable low latency communication (URLLC). In particular, we focus on the problem of total end-to-end (e2e) latency minimization for the considered system under the joint optimization of beamforming design at RIS, power and bandwidth allocation, processing rates, and task offloading parameters using DT architecture. To tackle the formulated non-convex optimization problem, we first model it as a Markov decision process (MDP), and later we adopt a deep reinforcement learning (DRL) algorithm to solve it effectively. Simulation results confirm that the proposed DT-enabled resource allocation scheme for the RIS-empowered MEC network achieves up to 60% lower transmission delay and 20% lower energy consumption compared to without RIS scheme.\",\"PeriodicalId\":354290,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"9 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在给定的超可靠低延迟通信(URLLC)约束下,数字孪生(DT)支持可重构智能表面(RIS)辅助移动边缘计算(MEC)系统。我们特别关注在RIS波束形成设计、功率和带宽分配、处理速率和使用DT架构的任务卸载参数的联合优化下,所考虑的系统的总端到端(e2e)延迟最小化问题。为了解决公式化的非凸优化问题,我们首先将其建模为马尔可夫决策过程(MDP),然后我们采用深度强化学习(DRL)算法来有效地解决它。仿真结果证实,与没有RIS方案相比,提出的支持dt的MEC网络资源分配方案的传输延迟降低了60%,能耗降低了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RIS-Empowered MEC for URLLC Systems with Digital-Twin-Driven Architecture
This paper investigates a digital twin (DT) enabled reconfigurable intelligent surface (RIS)-aided mobile edge computing (MEC) system under given constraints on ultra-reliable low latency communication (URLLC). In particular, we focus on the problem of total end-to-end (e2e) latency minimization for the considered system under the joint optimization of beamforming design at RIS, power and bandwidth allocation, processing rates, and task offloading parameters using DT architecture. To tackle the formulated non-convex optimization problem, we first model it as a Markov decision process (MDP), and later we adopt a deep reinforcement learning (DRL) algorithm to solve it effectively. Simulation results confirm that the proposed DT-enabled resource allocation scheme for the RIS-empowered MEC network achieves up to 60% lower transmission delay and 20% lower energy consumption compared to without RIS scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信