意图驱动的RAN切片编排:一种基于多智能体深度强化学习的方法

Junjie Zhang, Hao Wei, Dixiang Gao, Nian Xia, D. Wang, Shi Yan, Xiqing Liu
{"title":"意图驱动的RAN切片编排:一种基于多智能体深度强化学习的方法","authors":"Junjie Zhang, Hao Wei, Dixiang Gao, Nian Xia, D. Wang, Shi Yan, Xiqing Liu","doi":"10.1109/ICCCWorkshops57813.2023.10233836","DOIUrl":null,"url":null,"abstract":"Radio access network (RAN) slicing is a promising technology for meeting various service demands by establishing multiple logical networks on a shared physical infrastructure. However, the diverse quality of service (QoS) requirements of different services pose challenges to the efficient operation of network slices. Intent-driven network (IDN) automates and orchestrates networks, which can assist in operating network slices and ensuring the QoS requirements. Therefore, this paper introduces user intent into the RAN resource slicing. To maximize the service level agreement (SLA) satisfaction degree, we propose an intent-driven multi-agent deep Q-network (MA-DQN) based algorithm for resource allocation. Simulation results demonstrate the superiority of the proposed algorithm over baseline algorithms in terms of convergence, SLA satisfaction degree (SSD), and average data rate.","PeriodicalId":201450,"journal":{"name":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intent-Driven RAN Slice Orchestration: A Multi-Agent Deep Reinforcement Learning Based Approach\",\"authors\":\"Junjie Zhang, Hao Wei, Dixiang Gao, Nian Xia, D. Wang, Shi Yan, Xiqing Liu\",\"doi\":\"10.1109/ICCCWorkshops57813.2023.10233836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio access network (RAN) slicing is a promising technology for meeting various service demands by establishing multiple logical networks on a shared physical infrastructure. However, the diverse quality of service (QoS) requirements of different services pose challenges to the efficient operation of network slices. Intent-driven network (IDN) automates and orchestrates networks, which can assist in operating network slices and ensuring the QoS requirements. Therefore, this paper introduces user intent into the RAN resource slicing. To maximize the service level agreement (SLA) satisfaction degree, we propose an intent-driven multi-agent deep Q-network (MA-DQN) based algorithm for resource allocation. Simulation results demonstrate the superiority of the proposed algorithm over baseline algorithms in terms of convergence, SLA satisfaction degree (SSD), and average data rate.\",\"PeriodicalId\":201450,\"journal\":{\"name\":\"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCWorkshops57813.2023.10233836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops57813.2023.10233836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线接入网(RAN)切片是一种很有前途的技术,它通过在共享的物理基础设施上建立多个逻辑网络来满足各种业务需求。然而,不同业务对服务质量(QoS)的不同要求对网络切片的高效运行提出了挑战。意图驱动网络(Intent-driven network, IDN)实现了网络的自动化和编排,有助于实现网络切片的操作和QoS要求的保证。因此,本文将用户意图引入到RAN资源切片中。为了最大限度地提高服务水平协议(SLA)的满意度,我们提出了一种基于意图驱动的多智能体深度q网络(MA-DQN)的资源分配算法。仿真结果表明,该算法在收敛性、SLA满意度(SSD)和平均数据速率方面优于基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intent-Driven RAN Slice Orchestration: A Multi-Agent Deep Reinforcement Learning Based Approach
Radio access network (RAN) slicing is a promising technology for meeting various service demands by establishing multiple logical networks on a shared physical infrastructure. However, the diverse quality of service (QoS) requirements of different services pose challenges to the efficient operation of network slices. Intent-driven network (IDN) automates and orchestrates networks, which can assist in operating network slices and ensuring the QoS requirements. Therefore, this paper introduces user intent into the RAN resource slicing. To maximize the service level agreement (SLA) satisfaction degree, we propose an intent-driven multi-agent deep Q-network (MA-DQN) based algorithm for resource allocation. Simulation results demonstrate the superiority of the proposed algorithm over baseline algorithms in terms of convergence, SLA satisfaction degree (SSD), and average data rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信