基于上下文编码器的运动背景建模

Zhenshen Qu, Shuanghui Yu, Mengyu Fu
{"title":"基于上下文编码器的运动背景建模","authors":"Zhenshen Qu, Shuanghui Yu, Mengyu Fu","doi":"10.1109/ICAIPR.2016.7585207","DOIUrl":null,"url":null,"abstract":"A background modeling method for motion-based background of a video made by moving camera is proposed in this paper. We utilize the recently proposed context-encoder to model the motion-based background from a dynamic foreground. This method aims to restore the overall scene of a video by removing the moving foreground objects and learning the feature of its context. An advantage of this method is that the performance of background modeling will not be affected when the camera is moving fast.","PeriodicalId":127231,"journal":{"name":"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Motion background modeling based on context-encoder\",\"authors\":\"Zhenshen Qu, Shuanghui Yu, Mengyu Fu\",\"doi\":\"10.1109/ICAIPR.2016.7585207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A background modeling method for motion-based background of a video made by moving camera is proposed in this paper. We utilize the recently proposed context-encoder to model the motion-based background from a dynamic foreground. This method aims to restore the overall scene of a video by removing the moving foreground objects and learning the feature of its context. An advantage of this method is that the performance of background modeling will not be affected when the camera is moving fast.\",\"PeriodicalId\":127231,\"journal\":{\"name\":\"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIPR.2016.7585207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIPR.2016.7585207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对运动摄像机拍摄的视频,提出了一种基于运动背景的背景建模方法。我们利用最近提出的上下文编码器从动态前景建模基于运动的背景。该方法旨在通过去除移动的前景物体并学习其上下文的特征来恢复视频的整体场景。这种方法的一个优点是,当相机快速移动时,背景建模的性能不会受到影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion background modeling based on context-encoder
A background modeling method for motion-based background of a video made by moving camera is proposed in this paper. We utilize the recently proposed context-encoder to model the motion-based background from a dynamic foreground. This method aims to restore the overall scene of a video by removing the moving foreground objects and learning the feature of its context. An advantage of this method is that the performance of background modeling will not be affected when the camera is moving fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信