LidNet:用于自动驾驶的激光雷达点云序列增强感知和运动预测

Yasser H. Khalil, H. Mouftah
{"title":"LidNet:用于自动驾驶的激光雷达点云序列增强感知和运动预测","authors":"Yasser H. Khalil, H. Mouftah","doi":"10.1109/GLOBECOM48099.2022.10001152","DOIUrl":null,"url":null,"abstract":"Autonomous driving is strongly contingent on perception and motion prediction for scene understanding. In this paper, we propose LIDAR Network (LidNet) to boost perception and motion prediction accuracy by redesigning MotionNet architecture. MotionNet is a new real-time encoder-decoder model that achieves joint perception and motion prediction at a pixel level. LidNet improves MotionNet performance by replacing every two spatial convolution layers in its encoder-decoder architecture with residual blocks and relies on average pooling rather than strided convolution for spatial reduction. In addition, we adjust the lateral skip connections linking encoders and decoders to result in a symmetric network. The global temporal maximum pooling layers on the lateral connections are replaced with temporal average pooling. Further, we introduce a center layer between the encoder-decoder architecture, with no spatial reduction applied at the lowest levels. Our extensive evaluation performed on the nuScenes dataset confirms that LidNet outperforms the state-of-the-art and operates in real-time.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LidNet: Boosting Perception and Motion Prediction from a Sequence of LIDAR Point Clouds for Autonomous Driving\",\"authors\":\"Yasser H. Khalil, H. Mouftah\",\"doi\":\"10.1109/GLOBECOM48099.2022.10001152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving is strongly contingent on perception and motion prediction for scene understanding. In this paper, we propose LIDAR Network (LidNet) to boost perception and motion prediction accuracy by redesigning MotionNet architecture. MotionNet is a new real-time encoder-decoder model that achieves joint perception and motion prediction at a pixel level. LidNet improves MotionNet performance by replacing every two spatial convolution layers in its encoder-decoder architecture with residual blocks and relies on average pooling rather than strided convolution for spatial reduction. In addition, we adjust the lateral skip connections linking encoders and decoders to result in a symmetric network. The global temporal maximum pooling layers on the lateral connections are replaced with temporal average pooling. Further, we introduce a center layer between the encoder-decoder architecture, with no spatial reduction applied at the lowest levels. Our extensive evaluation performed on the nuScenes dataset confirms that LidNet outperforms the state-of-the-art and operates in real-time.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10001152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10001152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动驾驶在很大程度上依赖于场景理解的感知和运动预测。在本文中,我们提出了激光雷达网络(LIDAR Network, LidNet),通过重新设计MotionNet架构来提高感知和运动预测精度。MotionNet是一种新的实时编码器-解码器模型,可以在像素级上实现关节感知和运动预测。LidNet通过用残差块替换编码器-解码器架构中的每两个空间卷积层来提高MotionNet的性能,并依靠平均池化而不是跨行卷积来进行空间缩减。此外,我们还调整了连接编码器和解码器的横向跳过连接,以形成对称网络。将横向连接上的全局时间最大池化层替换为时间平均池化层。此外,我们在编码器-解码器架构之间引入了一个中心层,在最低级别上没有应用空间缩减。我们对nuScenes数据集进行了广泛的评估,证实了LidNet优于最先进的技术,并且可以实时运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LidNet: Boosting Perception and Motion Prediction from a Sequence of LIDAR Point Clouds for Autonomous Driving
Autonomous driving is strongly contingent on perception and motion prediction for scene understanding. In this paper, we propose LIDAR Network (LidNet) to boost perception and motion prediction accuracy by redesigning MotionNet architecture. MotionNet is a new real-time encoder-decoder model that achieves joint perception and motion prediction at a pixel level. LidNet improves MotionNet performance by replacing every two spatial convolution layers in its encoder-decoder architecture with residual blocks and relies on average pooling rather than strided convolution for spatial reduction. In addition, we adjust the lateral skip connections linking encoders and decoders to result in a symmetric network. The global temporal maximum pooling layers on the lateral connections are replaced with temporal average pooling. Further, we introduce a center layer between the encoder-decoder architecture, with no spatial reduction applied at the lowest levels. Our extensive evaluation performed on the nuScenes dataset confirms that LidNet outperforms the state-of-the-art and operates in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信