高斯径向核函数主成分分析模型在工业企业废水处理中的应用

Niu Dong-xiao, Gu Xihua
{"title":"高斯径向核函数主成分分析模型在工业企业废水处理中的应用","authors":"Niu Dong-xiao, Gu Xihua","doi":"10.1109/ICIEA.2007.4318636","DOIUrl":null,"url":null,"abstract":"According to the limitation of principal components analysis in dealing with the nonlinear data, connecting with the linear programming techniques for multidimensional analysis of preference, this paper presents the kernel principal components analysis-linear programming techniques for multidimensional analysis of preference evaluation model. Kernel function maps linear inseparable input data into a high dimensional linear separable feature space via a nonlinear mapping technique. Then it carries on the linear principal components analysis in the high dimensional feature space. In addition, the weight of each index can be obtained in this model, thus it makes up another shortage of principal components analysis. In the wastewater evaluation, the indices are numerous and the degree of correlation is not high, therefore, this model is more appropriate. Finally, this paper applies the model to the wastewater evaluation in Shanghai, and we obtain better evaluation results.","PeriodicalId":231682,"journal":{"name":"2007 2nd IEEE Conference on Industrial Electronics and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Gauss Radial Kernel Function Principal Component Analysis Model in the Industrial Enterprise's Wastewater Treatment\",\"authors\":\"Niu Dong-xiao, Gu Xihua\",\"doi\":\"10.1109/ICIEA.2007.4318636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the limitation of principal components analysis in dealing with the nonlinear data, connecting with the linear programming techniques for multidimensional analysis of preference, this paper presents the kernel principal components analysis-linear programming techniques for multidimensional analysis of preference evaluation model. Kernel function maps linear inseparable input data into a high dimensional linear separable feature space via a nonlinear mapping technique. Then it carries on the linear principal components analysis in the high dimensional feature space. In addition, the weight of each index can be obtained in this model, thus it makes up another shortage of principal components analysis. In the wastewater evaluation, the indices are numerous and the degree of correlation is not high, therefore, this model is more appropriate. Finally, this paper applies the model to the wastewater evaluation in Shanghai, and we obtain better evaluation results.\",\"PeriodicalId\":231682,\"journal\":{\"name\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2007.4318636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2007.4318636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对主成分分析在处理非线性数据时的局限性,结合多维偏好分析的线性规划技术,提出了多维偏好评价模型的核主成分分析-线性规划技术。核函数通过非线性映射技术将线性不可分的输入数据映射到高维线性可分特征空间中。然后在高维特征空间中进行线性主成分分析。此外,该模型还可以得到各指标的权重,从而弥补了主成分分析的另一个不足。在废水评价中,指标较多,关联度不高,因此该模型更为合适。最后,本文将该模型应用于上海市的污水评价中,取得了较好的评价结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Gauss Radial Kernel Function Principal Component Analysis Model in the Industrial Enterprise's Wastewater Treatment
According to the limitation of principal components analysis in dealing with the nonlinear data, connecting with the linear programming techniques for multidimensional analysis of preference, this paper presents the kernel principal components analysis-linear programming techniques for multidimensional analysis of preference evaluation model. Kernel function maps linear inseparable input data into a high dimensional linear separable feature space via a nonlinear mapping technique. Then it carries on the linear principal components analysis in the high dimensional feature space. In addition, the weight of each index can be obtained in this model, thus it makes up another shortage of principal components analysis. In the wastewater evaluation, the indices are numerous and the degree of correlation is not high, therefore, this model is more appropriate. Finally, this paper applies the model to the wastewater evaluation in Shanghai, and we obtain better evaluation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信