地震全波形反演的最佳传输方法

Bjorn Engquist, Brittany D. Froese, Yunan Yang
{"title":"地震全波形反演的最佳传输方法","authors":"Bjorn Engquist, Brittany D. Froese, Yunan Yang","doi":"10.4310/CMS.2016.V14.N8.A9","DOIUrl":null,"url":null,"abstract":"Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.","PeriodicalId":390991,"journal":{"name":"arXiv: Geophysics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"Optimal Transport for Seismic Full Waveform Inversion\",\"authors\":\"Bjorn Engquist, Brittany D. Froese, Yunan Yang\",\"doi\":\"10.4310/CMS.2016.V14.N8.A9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.\",\"PeriodicalId\":390991,\"journal\":{\"name\":\"arXiv: Geophysics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CMS.2016.V14.N8.A9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CMS.2016.V14.N8.A9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

在地震学中,全波形反演是一种从地表测量数据中确定地球性质的成功方法。该反问题通过PDE约束优化来解决,其中调整计算波场中的未知系数以最小化与测量数据的不匹配。我们建议使用与最佳运输相关的Wasserstein度量来测量这种不匹配。证明了该方法在目标函数的凸性和对噪声的鲁棒性方面的优点。瓦瑟斯坦度规是通过求解蒙日-安培方程来计算的。我们描述了一种算法来计算其Frechet梯度用于优化。给出了数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Transport for Seismic Full Waveform Inversion
Full waveform inversion is a successful procedure for determining properties of the earth from surface measurements in seismology. This inverse problem is solved by a PDE constrained optimization where unknown coefficients in a computed wavefield are adjusted to minimize the mismatch with the measured data. We propose using the Wasserstein metric, which is related to optimal transport, for measuring this mismatch. Several advantageous properties are proved with regards to convexity of the objective function and robustness with respect to noise. The Wasserstein metric is computed by solving a Monge-Ampere equation. We describe an algorithm for computing its Frechet gradient for use in the optimization. Numerical examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信