基于LBP和HOG的行人检测局部信息统计

R. Brehar, S. Nedevschi
{"title":"基于LBP和HOG的行人检测局部信息统计","authors":"R. Brehar, S. Nedevschi","doi":"10.1109/ICCP.2013.6646093","DOIUrl":null,"url":null,"abstract":"We present several methods of pedestrian detection in intensity images using different local statistical measures applied to two classes of features extensively used in pedestrian detection: uniform local binary patterns - LBP and a modified version of histogram of oriented gradients - HOG. Our work extracts local binary patterns and magnitude and orientation of the gradient image. Then we divide the image into blocks. Within each block we extract different statistics like: histogram (weighted by the gradient magnitude in the case of HOG), information, entropy and energy of the local binary code. We use Adaboost for training four classifiers and we analyze the classification error of each method on the Daimler benchmark pedestrian dataset.","PeriodicalId":380109,"journal":{"name":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Local information statistics of LBP and HOG for pedestrian detection\",\"authors\":\"R. Brehar, S. Nedevschi\",\"doi\":\"10.1109/ICCP.2013.6646093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present several methods of pedestrian detection in intensity images using different local statistical measures applied to two classes of features extensively used in pedestrian detection: uniform local binary patterns - LBP and a modified version of histogram of oriented gradients - HOG. Our work extracts local binary patterns and magnitude and orientation of the gradient image. Then we divide the image into blocks. Within each block we extract different statistics like: histogram (weighted by the gradient magnitude in the case of HOG), information, entropy and energy of the local binary code. We use Adaboost for training four classifiers and we analyze the classification error of each method on the Daimler benchmark pedestrian dataset.\",\"PeriodicalId\":380109,\"journal\":{\"name\":\"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2013.6646093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2013.6646093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了几种强度图像中的行人检测方法,使用不同的局部统计度量,应用于行人检测中广泛使用的两类特征:均匀局部二值模式- LBP和改进版本的定向梯度直方图- HOG。我们的工作提取局部二值模式和梯度图像的大小和方向。然后我们将图像分成块。在每个块中,我们提取不同的统计数据,如直方图(在HOG的情况下以梯度幅度加权),信息,熵和能量的局部二进制码。我们使用Adaboost对四种分类器进行训练,并在戴姆勒基准行人数据集上分析了每种方法的分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local information statistics of LBP and HOG for pedestrian detection
We present several methods of pedestrian detection in intensity images using different local statistical measures applied to two classes of features extensively used in pedestrian detection: uniform local binary patterns - LBP and a modified version of histogram of oriented gradients - HOG. Our work extracts local binary patterns and magnitude and orientation of the gradient image. Then we divide the image into blocks. Within each block we extract different statistics like: histogram (weighted by the gradient magnitude in the case of HOG), information, entropy and energy of the local binary code. We use Adaboost for training four classifiers and we analyze the classification error of each method on the Daimler benchmark pedestrian dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信