用聚类效度指标衡量SC-FCM混合聚类

Victor Utomo, Dhendra Marutho
{"title":"用聚类效度指标衡量SC-FCM混合聚类","authors":"Victor Utomo, Dhendra Marutho","doi":"10.1109/ISRITI.2018.8864459","DOIUrl":null,"url":null,"abstract":"Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.","PeriodicalId":162781,"journal":{"name":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Measuring Hybrid SC-FCM Clustering with Cluster Validity Index\",\"authors\":\"Victor Utomo, Dhendra Marutho\",\"doi\":\"10.1109/ISRITI.2018.8864459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.\",\"PeriodicalId\":162781,\"journal\":{\"name\":\"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRITI.2018.8864459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI.2018.8864459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

聚类是根据数据中每个元素的相似度将数据分成不同的组。为了验证聚类的有效性,引入了聚类有效性指标。混合SC-FCM聚类方法是一种克服模糊c均值聚类缺点的聚类技术。虽然混合SC-FCM是一种很有前途的方法,但尚未对结果聚类进行有效性测量。本文研究了混合SC-FCM方法的聚类效度指标。研究中使用的聚类有效性指标有划分系数、划分熵和Xen Beni指数。研究结果喜忧参半。尽管Hybrid SC-FCM方法未能如建议的那样找到最佳簇数,但这表明Hybrid SC-FCM在提供初始质心方面能够超越传统的FCM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Hybrid SC-FCM Clustering with Cluster Validity Index
Clustering classifies data into groups based on the similarity of each element of data. In order to validate the cluster, cluster validity index is introduced. Hybrid SC-FCM (Subtractive Clustering-Fuzzy C-Means) clustering method is a clustering technique to overcome the weakness of the FCM (Fuzzy C-Means) clustering. While the hybrid SC-FCM is a promising method, no validity measurement on the resulted cluster has been done. This research measures the cluster validity index of Hybrid SC-FCM method. The cluster validity indices used in the research are partition coefficient, partition entropy, and Xen Beni Index. The research shows mix results. Even though the Hybrid SC-FCM method fails to find the best number of clusters as suggested, it shows that hybrid SC-FCM able to exceed the traditional FCM method in providing initial centroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信