{"title":"基于虚拟传感器重构的磁悬浮系统容错控制","authors":"Raheleh Nazari, Alain Yetendje, M. Seron","doi":"10.1109/MED.2010.5547652","DOIUrl":null,"url":null,"abstract":"In this paper, a fault tolerant control strategy, which combines a fault detection and identification (FDI) method based on an invariant-set approach with controller reconfiguration based on the use of a virtual sensor, is implemented on a magnetic levitation (MAGLEV) system. The MAGLEV system includes two sensors which, together with a nominal observer-based feedback controller with integral action, are used to stabilise a steel ball at a desired position in the air. The FDI unit employs two observers that can detect the faulty and healthy situations based on a “set-separation” approach. The closed-loop system is reconfigured by means of a virtual sensor which is adapted to the fault situation detected by the FDI unit. Experimental results on a laboratory apparatus confirm the effectiveness of the proposed strategy.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fault-tolerant control of a magnetic levitation system using virtual-sensor-based reconfiguration\",\"authors\":\"Raheleh Nazari, Alain Yetendje, M. Seron\",\"doi\":\"10.1109/MED.2010.5547652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fault tolerant control strategy, which combines a fault detection and identification (FDI) method based on an invariant-set approach with controller reconfiguration based on the use of a virtual sensor, is implemented on a magnetic levitation (MAGLEV) system. The MAGLEV system includes two sensors which, together with a nominal observer-based feedback controller with integral action, are used to stabilise a steel ball at a desired position in the air. The FDI unit employs two observers that can detect the faulty and healthy situations based on a “set-separation” approach. The closed-loop system is reconfigured by means of a virtual sensor which is adapted to the fault situation detected by the FDI unit. Experimental results on a laboratory apparatus confirm the effectiveness of the proposed strategy.\",\"PeriodicalId\":149864,\"journal\":{\"name\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th Mediterranean Conference on Control and Automation, MED'10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2010.5547652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault-tolerant control of a magnetic levitation system using virtual-sensor-based reconfiguration
In this paper, a fault tolerant control strategy, which combines a fault detection and identification (FDI) method based on an invariant-set approach with controller reconfiguration based on the use of a virtual sensor, is implemented on a magnetic levitation (MAGLEV) system. The MAGLEV system includes two sensors which, together with a nominal observer-based feedback controller with integral action, are used to stabilise a steel ball at a desired position in the air. The FDI unit employs two observers that can detect the faulty and healthy situations based on a “set-separation” approach. The closed-loop system is reconfigured by means of a virtual sensor which is adapted to the fault situation detected by the FDI unit. Experimental results on a laboratory apparatus confirm the effectiveness of the proposed strategy.