Rodrigo Martín, Julian Iseringhausen, Michael Weinmann, M. Hullin
{"title":"材料特性的多模态感知","authors":"Rodrigo Martín, Julian Iseringhausen, Michael Weinmann, M. Hullin","doi":"10.1145/2804408.2804420","DOIUrl":null,"url":null,"abstract":"The human ability to perceive materials and their properties is a very intricate multisensory skill and as such not only an intriguing research subject, but also an immense challenge when creating realistic virtual presentations of materials. In this paper, our goal is to learn about how the visual and auditory channels contribute to our perception of characteristic material parameters. At the center of our work are two psychophysical experiments performed on tablet computers, where the subjects rated a set of perceptual material qualities under different stimuli. The first experiment covers a full collection of materials in different presentations (visual, auditory and audio-visual). As a point of reference, subjects also performed all ratings on physical material samples. A key result of this experiment is that auditory cues strongly benefit the perception of certain qualities that are of a tactile nature (like \"hard--soft\", \"rough--smooth\"). The follow-up experiment demonstrates that, to a certain extent, audio cues can also be transferred to other materials, exaggerating or attenuating some of their perceived qualities. From these results, we conclude that a multimodal approach, and in particular the inclusion of sound, can greatly enhance the digital communication of material properties.","PeriodicalId":283323,"journal":{"name":"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Multimodal perception of material properties\",\"authors\":\"Rodrigo Martín, Julian Iseringhausen, Michael Weinmann, M. Hullin\",\"doi\":\"10.1145/2804408.2804420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human ability to perceive materials and their properties is a very intricate multisensory skill and as such not only an intriguing research subject, but also an immense challenge when creating realistic virtual presentations of materials. In this paper, our goal is to learn about how the visual and auditory channels contribute to our perception of characteristic material parameters. At the center of our work are two psychophysical experiments performed on tablet computers, where the subjects rated a set of perceptual material qualities under different stimuli. The first experiment covers a full collection of materials in different presentations (visual, auditory and audio-visual). As a point of reference, subjects also performed all ratings on physical material samples. A key result of this experiment is that auditory cues strongly benefit the perception of certain qualities that are of a tactile nature (like \\\"hard--soft\\\", \\\"rough--smooth\\\"). The follow-up experiment demonstrates that, to a certain extent, audio cues can also be transferred to other materials, exaggerating or attenuating some of their perceived qualities. From these results, we conclude that a multimodal approach, and in particular the inclusion of sound, can greatly enhance the digital communication of material properties.\",\"PeriodicalId\":283323,\"journal\":{\"name\":\"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2804408.2804420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM SIGGRAPH Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2804408.2804420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The human ability to perceive materials and their properties is a very intricate multisensory skill and as such not only an intriguing research subject, but also an immense challenge when creating realistic virtual presentations of materials. In this paper, our goal is to learn about how the visual and auditory channels contribute to our perception of characteristic material parameters. At the center of our work are two psychophysical experiments performed on tablet computers, where the subjects rated a set of perceptual material qualities under different stimuli. The first experiment covers a full collection of materials in different presentations (visual, auditory and audio-visual). As a point of reference, subjects also performed all ratings on physical material samples. A key result of this experiment is that auditory cues strongly benefit the perception of certain qualities that are of a tactile nature (like "hard--soft", "rough--smooth"). The follow-up experiment demonstrates that, to a certain extent, audio cues can also be transferred to other materials, exaggerating or attenuating some of their perceived qualities. From these results, we conclude that a multimodal approach, and in particular the inclusion of sound, can greatly enhance the digital communication of material properties.