Chang How Tan, V. C. Lee, Jessie Nghiem, Priya Laxman
{"title":"澳大利亚在线家电产品的合规性分析","authors":"Chang How Tan, V. C. Lee, Jessie Nghiem, Priya Laxman","doi":"10.1145/3539597.3575788","DOIUrl":null,"url":null,"abstract":"Commercially sold electrical or gas products must comply with the safety standards imposed within a country and get registered and certified by a regulated body. However, with the increasing transition of businesses to e-commerce platforms, it becomes challenging to govern the compliance status of online products. This can increase the risk of purchasing non-compliant products which may be unsafe to use. Additionally, examining the compliance status before purchasing can be strenuous because the relevant compliance information can be ambiguous and not always directly available. Therefore, we collaborated with a regulated body from Australia, Energy Safe Victoria, and conducted compliance analyses for household appliances sold on multiple online platforms. A fully autonomous method shown in this public repository is also introduced to check the compliance status of any online product. In this talk, we discuss the compliance check process, which incorporates fuzzy logic for textual matching and a Convolutional Neural Network (CNN) model to classify the product listing based on the images listed. Subsequently, we studied the results with the business users and found that many online listings are non-compliant, signifying that online-shopping consumers are highly susceptible to buying unsafe products. We hope this talk can inspire more follow-up works that collaborate with regulated bodies to introduce a user-friendly compliance check platform that assists in educating consumers to purchase compliant products.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compliance Analyses of Australia's Online Household Appliances\",\"authors\":\"Chang How Tan, V. C. Lee, Jessie Nghiem, Priya Laxman\",\"doi\":\"10.1145/3539597.3575788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercially sold electrical or gas products must comply with the safety standards imposed within a country and get registered and certified by a regulated body. However, with the increasing transition of businesses to e-commerce platforms, it becomes challenging to govern the compliance status of online products. This can increase the risk of purchasing non-compliant products which may be unsafe to use. Additionally, examining the compliance status before purchasing can be strenuous because the relevant compliance information can be ambiguous and not always directly available. Therefore, we collaborated with a regulated body from Australia, Energy Safe Victoria, and conducted compliance analyses for household appliances sold on multiple online platforms. A fully autonomous method shown in this public repository is also introduced to check the compliance status of any online product. In this talk, we discuss the compliance check process, which incorporates fuzzy logic for textual matching and a Convolutional Neural Network (CNN) model to classify the product listing based on the images listed. Subsequently, we studied the results with the business users and found that many online listings are non-compliant, signifying that online-shopping consumers are highly susceptible to buying unsafe products. We hope this talk can inspire more follow-up works that collaborate with regulated bodies to introduce a user-friendly compliance check platform that assists in educating consumers to purchase compliant products.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3575788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3575788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compliance Analyses of Australia's Online Household Appliances
Commercially sold electrical or gas products must comply with the safety standards imposed within a country and get registered and certified by a regulated body. However, with the increasing transition of businesses to e-commerce platforms, it becomes challenging to govern the compliance status of online products. This can increase the risk of purchasing non-compliant products which may be unsafe to use. Additionally, examining the compliance status before purchasing can be strenuous because the relevant compliance information can be ambiguous and not always directly available. Therefore, we collaborated with a regulated body from Australia, Energy Safe Victoria, and conducted compliance analyses for household appliances sold on multiple online platforms. A fully autonomous method shown in this public repository is also introduced to check the compliance status of any online product. In this talk, we discuss the compliance check process, which incorporates fuzzy logic for textual matching and a Convolutional Neural Network (CNN) model to classify the product listing based on the images listed. Subsequently, we studied the results with the business users and found that many online listings are non-compliant, signifying that online-shopping consumers are highly susceptible to buying unsafe products. We hope this talk can inspire more follow-up works that collaborate with regulated bodies to introduce a user-friendly compliance check platform that assists in educating consumers to purchase compliant products.