A. Mehrabian, Shuai Sun, Vikram K. Narayana, Jeff Anderson, Jiaxin Peng, V. Sorger, T. El-Ghazawi
{"title":"D3NoC:动态数据驱动的混合光子等离子体NoC","authors":"A. Mehrabian, Shuai Sun, Vikram K. Narayana, Jeff Anderson, Jiaxin Peng, V. Sorger, T. El-Ghazawi","doi":"10.1145/3203217.3203272","DOIUrl":null,"url":null,"abstract":"It was previously shown that Hybrid Photonic Plasmonic Interconnect (HyPPI) is an efficient candidate for augmenting electronic network on chips (NoCs). Here we introduce a reconfigurable Hybrid Photonic Plasmonic NoC termed D3NOC, which intelligently augments electrical meshes with a hybrid photon-plasmon interconnect express bus. The intelligence uses the Dynamic Data Driven Application System (DDDAS) paradigm, where computations and measurements form a dynamic closed feedback loop. Our results show up to 67% latency improvements and 69% dynamic power net improvements beyond overhead-corrected performance compared to a 16 × 16 base electrical mesh.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"D3NoC: a dynamic data-driven hybrid photonic plasmonic NoC\",\"authors\":\"A. Mehrabian, Shuai Sun, Vikram K. Narayana, Jeff Anderson, Jiaxin Peng, V. Sorger, T. El-Ghazawi\",\"doi\":\"10.1145/3203217.3203272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was previously shown that Hybrid Photonic Plasmonic Interconnect (HyPPI) is an efficient candidate for augmenting electronic network on chips (NoCs). Here we introduce a reconfigurable Hybrid Photonic Plasmonic NoC termed D3NOC, which intelligently augments electrical meshes with a hybrid photon-plasmon interconnect express bus. The intelligence uses the Dynamic Data Driven Application System (DDDAS) paradigm, where computations and measurements form a dynamic closed feedback loop. Our results show up to 67% latency improvements and 69% dynamic power net improvements beyond overhead-corrected performance compared to a 16 × 16 base electrical mesh.\",\"PeriodicalId\":127096,\"journal\":{\"name\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3203217.3203272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3203272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D3NoC: a dynamic data-driven hybrid photonic plasmonic NoC
It was previously shown that Hybrid Photonic Plasmonic Interconnect (HyPPI) is an efficient candidate for augmenting electronic network on chips (NoCs). Here we introduce a reconfigurable Hybrid Photonic Plasmonic NoC termed D3NOC, which intelligently augments electrical meshes with a hybrid photon-plasmon interconnect express bus. The intelligence uses the Dynamic Data Driven Application System (DDDAS) paradigm, where computations and measurements form a dynamic closed feedback loop. Our results show up to 67% latency improvements and 69% dynamic power net improvements beyond overhead-corrected performance compared to a 16 × 16 base electrical mesh.