基于遗传算法的NoC标准体系结构多目标优化

A. A. Morgan, H. Elmiligi, M. El-Kharashi, F. Gebali
{"title":"基于遗传算法的NoC标准体系结构多目标优化","authors":"A. A. Morgan, H. Elmiligi, M. El-Kharashi, F. Gebali","doi":"10.1109/ISSPIT.2010.5711730","DOIUrl":null,"url":null,"abstract":"One of the challenging problems in Networks-on-Chip (NoC) design is optimizing the architectural structure of the on-chip network in order to maximize the network performance while minimizing corresponding costs. In this paper, a methodology for multi-objective optimization of NoC standard architectures using Genetic Algorithms is presented. The methodology considers two cost metrics, power and area, and two performance metrics, delay and reliability. Moreover, our methodology combines the best selection of NoC standard topology, the optimum mapping of application cores onto that topology, and the best routing of application traffic traces over the generated network. The methodology is evaluated by applying it to an NoC benchmark application as a case study. Results show that the architectures generated by our methodology outperform those of other standard architectures customization techniques with respect to power, area, delay, reliability, and the combination of the four metrics.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-objective optimization of NoC standard architectures using Genetic Algorithms\",\"authors\":\"A. A. Morgan, H. Elmiligi, M. El-Kharashi, F. Gebali\",\"doi\":\"10.1109/ISSPIT.2010.5711730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the challenging problems in Networks-on-Chip (NoC) design is optimizing the architectural structure of the on-chip network in order to maximize the network performance while minimizing corresponding costs. In this paper, a methodology for multi-objective optimization of NoC standard architectures using Genetic Algorithms is presented. The methodology considers two cost metrics, power and area, and two performance metrics, delay and reliability. Moreover, our methodology combines the best selection of NoC standard topology, the optimum mapping of application cores onto that topology, and the best routing of application traffic traces over the generated network. The methodology is evaluated by applying it to an NoC benchmark application as a case study. Results show that the architectures generated by our methodology outperform those of other standard architectures customization techniques with respect to power, area, delay, reliability, and the combination of the four metrics.\",\"PeriodicalId\":308189,\"journal\":{\"name\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2010.5711730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在片上网络(NoC)设计中,优化片上网络的架构结构是一个具有挑战性的问题,以最大限度地提高网络性能,同时最小化相应的成本。本文提出了一种基于遗传算法的NoC标准体系结构多目标优化方法。该方法考虑了两个成本指标,功率和面积,以及两个性能指标,延迟和可靠性。此外,我们的方法结合了NoC标准拓扑的最佳选择、应用程序核心到该拓扑的最佳映射以及生成的网络上应用程序流量跟踪的最佳路由。通过将该方法应用于NoC基准应用程序作为案例研究来评估该方法。结果表明,我们的方法生成的体系结构在功率、面积、延迟、可靠性和这四个指标的组合方面优于其他标准体系结构定制技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of NoC standard architectures using Genetic Algorithms
One of the challenging problems in Networks-on-Chip (NoC) design is optimizing the architectural structure of the on-chip network in order to maximize the network performance while minimizing corresponding costs. In this paper, a methodology for multi-objective optimization of NoC standard architectures using Genetic Algorithms is presented. The methodology considers two cost metrics, power and area, and two performance metrics, delay and reliability. Moreover, our methodology combines the best selection of NoC standard topology, the optimum mapping of application cores onto that topology, and the best routing of application traffic traces over the generated network. The methodology is evaluated by applying it to an NoC benchmark application as a case study. Results show that the architectures generated by our methodology outperform those of other standard architectures customization techniques with respect to power, area, delay, reliability, and the combination of the four metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信