如何利用NSGA-II获得公平的甘蔗收获管理决策

D. Pacheco, T. Lucas, Fernando Buarque de Lima-Neto
{"title":"如何利用NSGA-II获得公平的甘蔗收获管理决策","authors":"D. Pacheco, T. Lucas, Fernando Buarque de Lima-Neto","doi":"10.1109/HIS.2007.53","DOIUrl":null,"url":null,"abstract":"The world's demand for sugar and particularly for renewable fuels such as ethanol requires an increase in production in sugar mills. The use of artificial neural networks (ANN) posed as a predictive core associated with the algorithm NSGA-II aims at helping decision makers to optimize the multi-objective harvest problem. This paper presents two approaches and the good results achieved as compared with other classical techniques.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"How to Obtain Fair Managerial Decisions in Sugar Cane Harvest Using NSGA-II\",\"authors\":\"D. Pacheco, T. Lucas, Fernando Buarque de Lima-Neto\",\"doi\":\"10.1109/HIS.2007.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world's demand for sugar and particularly for renewable fuels such as ethanol requires an increase in production in sugar mills. The use of artificial neural networks (ANN) posed as a predictive core associated with the algorithm NSGA-II aims at helping decision makers to optimize the multi-objective harvest problem. This paper presents two approaches and the good results achieved as compared with other classical techniques.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

世界对糖的需求,特别是对乙醇等可再生燃料的需求,要求糖厂增加产量。利用人工神经网络(ANN)作为预测核心与NSGA-II算法相关联,旨在帮助决策者优化多目标收获问题。本文介绍了两种方法,并与其他经典方法进行了比较,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Obtain Fair Managerial Decisions in Sugar Cane Harvest Using NSGA-II
The world's demand for sugar and particularly for renewable fuels such as ethanol requires an increase in production in sugar mills. The use of artificial neural networks (ANN) posed as a predictive core associated with the algorithm NSGA-II aims at helping decision makers to optimize the multi-objective harvest problem. This paper presents two approaches and the good results achieved as compared with other classical techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信