RoLNiP:基于噪声两两比较的鲁棒学习

Samartha S Maheshwara, Naresh Manwani
{"title":"RoLNiP:基于噪声两两比较的鲁棒学习","authors":"Samartha S Maheshwara, Naresh Manwani","doi":"10.48550/arXiv.2303.02341","DOIUrl":null,"url":null,"abstract":"This paper presents a robust approach for learning from noisy pairwise comparisons. We propose sufficient conditions on the loss function under which the risk minimization framework becomes robust to noise in the pairwise similar dissimilar data. Our approach does not require the knowledge of noise rate in the uniform noise case. In the case of conditional noise, the proposed method depends on the noise rates. For such cases, we offer a provably correct approach for estimating the noise rates. Thus, we propose an end-to-end approach to learning robust classifiers in this setting. We experimentally show that the proposed approach RoLNiP outperforms the robust state-of-the-art methods for learning with noisy pairwise comparisons.","PeriodicalId":119756,"journal":{"name":"Asian Conference on Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoLNiP: Robust Learning Using Noisy Pairwise Comparisons\",\"authors\":\"Samartha S Maheshwara, Naresh Manwani\",\"doi\":\"10.48550/arXiv.2303.02341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust approach for learning from noisy pairwise comparisons. We propose sufficient conditions on the loss function under which the risk minimization framework becomes robust to noise in the pairwise similar dissimilar data. Our approach does not require the knowledge of noise rate in the uniform noise case. In the case of conditional noise, the proposed method depends on the noise rates. For such cases, we offer a provably correct approach for estimating the noise rates. Thus, we propose an end-to-end approach to learning robust classifiers in this setting. We experimentally show that the proposed approach RoLNiP outperforms the robust state-of-the-art methods for learning with noisy pairwise comparisons.\",\"PeriodicalId\":119756,\"journal\":{\"name\":\"Asian Conference on Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Conference on Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2303.02341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.02341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从噪声两两比较中学习的鲁棒方法。我们提出了损失函数的充分条件,在此条件下,风险最小化框架对两两相似的不相似数据具有鲁棒性。我们的方法不需要知道均匀噪声情况下的噪声率。在有条件噪声的情况下,所提出的方法取决于噪声率。对于这种情况,我们提供了一种可证明正确的估计噪声率的方法。因此,我们提出了一种端到端的方法来学习这种情况下的鲁棒分类器。我们的实验表明,所提出的方法RoLNiP优于具有噪声两两比较的鲁棒的最先进的学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RoLNiP: Robust Learning Using Noisy Pairwise Comparisons
This paper presents a robust approach for learning from noisy pairwise comparisons. We propose sufficient conditions on the loss function under which the risk minimization framework becomes robust to noise in the pairwise similar dissimilar data. Our approach does not require the knowledge of noise rate in the uniform noise case. In the case of conditional noise, the proposed method depends on the noise rates. For such cases, we offer a provably correct approach for estimating the noise rates. Thus, we propose an end-to-end approach to learning robust classifiers in this setting. We experimentally show that the proposed approach RoLNiP outperforms the robust state-of-the-art methods for learning with noisy pairwise comparisons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信