周期问题的新趋势及相关特征值的确定

K. Niino, Ryota Misawa, N. Nishimura
{"title":"周期问题的新趋势及相关特征值的确定","authors":"K. Niino, Ryota Misawa, N. Nishimura","doi":"10.1049/sbew533e_ch12","DOIUrl":null,"url":null,"abstract":"In this chapter, we address the aforementioned issues one by one. We start by formulating periodic BVPs and, then, introduce a pFMNI and a contour -integral -based eigenvalue-solver called the Sakurai -Sugiura method (SSM). We discuss techniques related to the analytic continuation of tools for pFMNI to complex frequencies, as well as a simple method of making distinction between true and fictitious eigenvalues. We finally consider numerical examples, followed by conclusions. More information on the theoretical developments related to the content of this chapter can be found.","PeriodicalId":287175,"journal":{"name":"New Trends in Computational Electromagnetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New trends in periodic problems and determining related eigenvalues\",\"authors\":\"K. Niino, Ryota Misawa, N. Nishimura\",\"doi\":\"10.1049/sbew533e_ch12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we address the aforementioned issues one by one. We start by formulating periodic BVPs and, then, introduce a pFMNI and a contour -integral -based eigenvalue-solver called the Sakurai -Sugiura method (SSM). We discuss techniques related to the analytic continuation of tools for pFMNI to complex frequencies, as well as a simple method of making distinction between true and fictitious eigenvalues. We finally consider numerical examples, followed by conclusions. More information on the theoretical developments related to the content of this chapter can be found.\",\"PeriodicalId\":287175,\"journal\":{\"name\":\"New Trends in Computational Electromagnetics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Trends in Computational Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/sbew533e_ch12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Trends in Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sbew533e_ch12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,我们将逐一解决上述问题。我们首先提出周期bvp,然后引入pFMNI和基于轮廓积分的特征值求解器,称为Sakurai -Sugiura方法(SSM)。我们讨论了与pFMNI工具的解析延拓到复频率相关的技术,以及区分真实和虚构特征值的简单方法。我们最后考虑数值例子,然后得出结论。有关本章内容的理论发展的更多信息可以在这里找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New trends in periodic problems and determining related eigenvalues
In this chapter, we address the aforementioned issues one by one. We start by formulating periodic BVPs and, then, introduce a pFMNI and a contour -integral -based eigenvalue-solver called the Sakurai -Sugiura method (SSM). We discuss techniques related to the analytic continuation of tools for pFMNI to complex frequencies, as well as a simple method of making distinction between true and fictitious eigenvalues. We finally consider numerical examples, followed by conclusions. More information on the theoretical developments related to the content of this chapter can be found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信