V. Casola, Alessandra De Benedictis, Massimiliano Albanese
{"title":"一种保护资源受限的分布式设备的移动目标防御方法","authors":"V. Casola, Alessandra De Benedictis, Massimiliano Albanese","doi":"10.1109/IRI.2013.6642449","DOIUrl":null,"url":null,"abstract":"Techniques aimed at continuously changing a system's attack surface, usually referred to as Moving Target Defense (MTD), are emerging as powerful tools for thwarting cyber attacks. Such mechanisms increase the uncertainty, complexity, and cost for attackers, limit the exposure of vulnerabilities, and ultimately increase overall resiliency. In this paper, we propose an MTD approach for protecting resource-constrained distributed devices through fine-grained reconfiguration at different architectural layers. In order to show the feasibility of our approach in real-world scenarios, we study its application to Wireless Sensor Networks (WSNs), introducing two different reconfiguration mechanisms. Finally, we show how the proposed mechanisms are effective in reducing the probability of successful attacks.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"A moving target defense approach for protecting resource-constrained distributed devices\",\"authors\":\"V. Casola, Alessandra De Benedictis, Massimiliano Albanese\",\"doi\":\"10.1109/IRI.2013.6642449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Techniques aimed at continuously changing a system's attack surface, usually referred to as Moving Target Defense (MTD), are emerging as powerful tools for thwarting cyber attacks. Such mechanisms increase the uncertainty, complexity, and cost for attackers, limit the exposure of vulnerabilities, and ultimately increase overall resiliency. In this paper, we propose an MTD approach for protecting resource-constrained distributed devices through fine-grained reconfiguration at different architectural layers. In order to show the feasibility of our approach in real-world scenarios, we study its application to Wireless Sensor Networks (WSNs), introducing two different reconfiguration mechanisms. Finally, we show how the proposed mechanisms are effective in reducing the probability of successful attacks.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A moving target defense approach for protecting resource-constrained distributed devices
Techniques aimed at continuously changing a system's attack surface, usually referred to as Moving Target Defense (MTD), are emerging as powerful tools for thwarting cyber attacks. Such mechanisms increase the uncertainty, complexity, and cost for attackers, limit the exposure of vulnerabilities, and ultimately increase overall resiliency. In this paper, we propose an MTD approach for protecting resource-constrained distributed devices through fine-grained reconfiguration at different architectural layers. In order to show the feasibility of our approach in real-world scenarios, we study its application to Wireless Sensor Networks (WSNs), introducing two different reconfiguration mechanisms. Finally, we show how the proposed mechanisms are effective in reducing the probability of successful attacks.