图像压缩和解压缩使用栅栏抽取

N. Taranath, C. K. Subbaraya, L. M. Darshan, C. Gopalakrishna, Sourabh Saklecha, A. Varun, S. Sandesh
{"title":"图像压缩和解压缩使用栅栏抽取","authors":"N. Taranath, C. K. Subbaraya, L. M. Darshan, C. Gopalakrishna, Sourabh Saklecha, A. Varun, S. Sandesh","doi":"10.1109/ICAIT47043.2019.8987423","DOIUrl":null,"url":null,"abstract":"Image Compression is a method of reducing the amount of data that we require to represent the image. Image Compression has been the most useful and very successful technologies in the field of digital image processing. Researchers have been using oversampling of images till recently. In the implementedsystem, architecture is implementedthat compresses the images using decimation of pixels. The image is prefiltered using a low-pass prefiltering process before pixel decimation to get redefined edges. In the resulting decimated image blocking artifacts are reduced, hence we can get an image that can be compressed and transmitted without any significant change to current image coding standards and systems.For the decompression procedure, the low resolution image is first decompressed then it is upscaled to its original resolution using image upscaling method and then applying edge enhancement operation. The implemented approach of pixel decimation outperforms JPEG in PSNR measure and achieves superior visual quality.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Compression and Decompression using Fence Decimation\",\"authors\":\"N. Taranath, C. K. Subbaraya, L. M. Darshan, C. Gopalakrishna, Sourabh Saklecha, A. Varun, S. Sandesh\",\"doi\":\"10.1109/ICAIT47043.2019.8987423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image Compression is a method of reducing the amount of data that we require to represent the image. Image Compression has been the most useful and very successful technologies in the field of digital image processing. Researchers have been using oversampling of images till recently. In the implementedsystem, architecture is implementedthat compresses the images using decimation of pixels. The image is prefiltered using a low-pass prefiltering process before pixel decimation to get redefined edges. In the resulting decimated image blocking artifacts are reduced, hence we can get an image that can be compressed and transmitted without any significant change to current image coding standards and systems.For the decompression procedure, the low resolution image is first decompressed then it is upscaled to its original resolution using image upscaling method and then applying edge enhancement operation. The implemented approach of pixel decimation outperforms JPEG in PSNR measure and achieves superior visual quality.\",\"PeriodicalId\":221994,\"journal\":{\"name\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Advances in Information Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT47043.2019.8987423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像压缩是一种减少表示图像所需的数据量的方法。图像压缩是数字图像处理领域中最有用、最成功的技术之一。直到最近,研究人员一直在使用图像过采样。在实现的系统中,实现了使用抽取像素来压缩图像的架构。在像素抽取之前,使用低通预滤波过程对图像进行预滤波,以获得重新定义的边缘。在得到的抽取图像中,块伪影减少了,因此我们可以得到可以压缩和传输的图像,而不需要对当前的图像编码标准和系统进行任何重大更改。在解压缩过程中,首先对低分辨率图像进行解压缩,然后使用图像上尺度法将其升级到原始分辨率,然后进行边缘增强操作。所实现的像素抽取方法在PSNR测量上优于JPEG,具有较好的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Compression and Decompression using Fence Decimation
Image Compression is a method of reducing the amount of data that we require to represent the image. Image Compression has been the most useful and very successful technologies in the field of digital image processing. Researchers have been using oversampling of images till recently. In the implementedsystem, architecture is implementedthat compresses the images using decimation of pixels. The image is prefiltered using a low-pass prefiltering process before pixel decimation to get redefined edges. In the resulting decimated image blocking artifacts are reduced, hence we can get an image that can be compressed and transmitted without any significant change to current image coding standards and systems.For the decompression procedure, the low resolution image is first decompressed then it is upscaled to its original resolution using image upscaling method and then applying edge enhancement operation. The implemented approach of pixel decimation outperforms JPEG in PSNR measure and achieves superior visual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信