关于任意维的投影重建

B. Nasihatkon, R. Hartley, J. Trumpf
{"title":"关于任意维的投影重建","authors":"B. Nasihatkon, R. Hartley, J. Trumpf","doi":"10.1109/CVPR.2014.68","DOIUrl":null,"url":null,"abstract":"We study the theory of projective reconstruction for multiple projections from an arbitrary dimensional projective space into lower-dimensional spaces. This problem is important due to its applications in the analysis of dynamical scenes. The current theory, due to Hartley and Schaffalitzky, is based on the Grassmann tensor, generalizing the ideas of fundamental matrix, trifocal tensor and quadrifocal tensor used in the well-studied case of 3D to 2D projections. We present a theory whose point of departure is the projective equations rather than the Grassmann tensor. This is a better fit for the analysis of approaches such as bundle adjustment and projective factorization which seek to directly solve the projective equations. In a first step, we prove that there is a unique Grassmann tensor corresponding to each set of image points, a question that remained open in the work of Hartley and Schaffalitzky. Then, we prove that projective equivalence follows from the set of projective equations given certain conditions on the estimated camera-point setup or the estimated projective depths. Finally, we demonstrate how wrong solutions to the projective factorization problem can happen, and classify such degenerate solutions based on the zero patterns in the estimated depth matrix.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Projective Reconstruction in Arbitrary Dimensions\",\"authors\":\"B. Nasihatkon, R. Hartley, J. Trumpf\",\"doi\":\"10.1109/CVPR.2014.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the theory of projective reconstruction for multiple projections from an arbitrary dimensional projective space into lower-dimensional spaces. This problem is important due to its applications in the analysis of dynamical scenes. The current theory, due to Hartley and Schaffalitzky, is based on the Grassmann tensor, generalizing the ideas of fundamental matrix, trifocal tensor and quadrifocal tensor used in the well-studied case of 3D to 2D projections. We present a theory whose point of departure is the projective equations rather than the Grassmann tensor. This is a better fit for the analysis of approaches such as bundle adjustment and projective factorization which seek to directly solve the projective equations. In a first step, we prove that there is a unique Grassmann tensor corresponding to each set of image points, a question that remained open in the work of Hartley and Schaffalitzky. Then, we prove that projective equivalence follows from the set of projective equations given certain conditions on the estimated camera-point setup or the estimated projective depths. Finally, we demonstrate how wrong solutions to the projective factorization problem can happen, and classify such degenerate solutions based on the zero patterns in the estimated depth matrix.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了从任意维射影空间到低维空间的多个投影的射影重建理论。这个问题对于动态场景的分析具有重要意义。目前的理论,由于Hartley和Schaffalitzky,是基于Grassmann张量,推广了基本矩阵,三焦张量和四焦张量的思想,这些思想在3D到2D投影的研究中得到了很好的应用。我们提出了一个理论,它的出发点是射影方程而不是格拉斯曼张量。这是一个比较适合的分析方法,如束平差和射影分解,寻求直接解决射影方程。在第一步中,我们证明了每一组图像点都有一个唯一的Grassmann张量,这个问题在Hartley和Schaffalitzky的工作中仍然是开放的。然后,在估计相机点设置或估计投影深度的一定条件下,证明了投影方程集的投影等价性。最后,我们展示了投影分解问题的错误解是如何发生的,并基于估计深度矩阵中的零模式对这种退化解进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Projective Reconstruction in Arbitrary Dimensions
We study the theory of projective reconstruction for multiple projections from an arbitrary dimensional projective space into lower-dimensional spaces. This problem is important due to its applications in the analysis of dynamical scenes. The current theory, due to Hartley and Schaffalitzky, is based on the Grassmann tensor, generalizing the ideas of fundamental matrix, trifocal tensor and quadrifocal tensor used in the well-studied case of 3D to 2D projections. We present a theory whose point of departure is the projective equations rather than the Grassmann tensor. This is a better fit for the analysis of approaches such as bundle adjustment and projective factorization which seek to directly solve the projective equations. In a first step, we prove that there is a unique Grassmann tensor corresponding to each set of image points, a question that remained open in the work of Hartley and Schaffalitzky. Then, we prove that projective equivalence follows from the set of projective equations given certain conditions on the estimated camera-point setup or the estimated projective depths. Finally, we demonstrate how wrong solutions to the projective factorization problem can happen, and classify such degenerate solutions based on the zero patterns in the estimated depth matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信