基于多核高斯过程的人体运动建模

Ziqi Zhu, Jiayuan Zhang, Jixin Zou
{"title":"基于多核高斯过程的人体运动建模","authors":"Ziqi Zhu, Jiayuan Zhang, Jixin Zou","doi":"10.1109/SPAC.2017.8304322","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of human motion modeling. We adopt the probabilistic modeling approach to over come the over-fitting problem in the parameter training process and propose a multi-kernel based Gaussian process dynamic model. First, we will do the dimensional reduction, and the method is the Gaussian process latent variable model. Different from existing modeling method, we introduce multikernel learning into the dimensional reduction process to capture the complex distribution of high-dimensional data. Second, for modeling the dynamic latent variable, we use a multi-kernel learning. We are not give a strong assumption on form of the nonlinear projection mapping and nonlinear dynamic function, our model automatically learn a suitable nonlinear kernel based on the training samples, and it can fit many kind of times series. We demonstrate the effectiveness of our method on the CMU human motion data set. The Experimental results show that our modeling method achieves promising modeling capability and is capable of predict human motion.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A multi-kernel based Gaussian process dynamic model for human motion modeling\",\"authors\":\"Ziqi Zhu, Jiayuan Zhang, Jixin Zou\",\"doi\":\"10.1109/SPAC.2017.8304322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the problem of human motion modeling. We adopt the probabilistic modeling approach to over come the over-fitting problem in the parameter training process and propose a multi-kernel based Gaussian process dynamic model. First, we will do the dimensional reduction, and the method is the Gaussian process latent variable model. Different from existing modeling method, we introduce multikernel learning into the dimensional reduction process to capture the complex distribution of high-dimensional data. Second, for modeling the dynamic latent variable, we use a multi-kernel learning. We are not give a strong assumption on form of the nonlinear projection mapping and nonlinear dynamic function, our model automatically learn a suitable nonlinear kernel based on the training samples, and it can fit many kind of times series. We demonstrate the effectiveness of our method on the CMU human motion data set. The Experimental results show that our modeling method achieves promising modeling capability and is capable of predict human motion.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究人体运动建模问题。采用概率建模方法克服了参数训练过程中的过拟合问题,提出了一种基于多核的高斯过程动态模型。首先,我们将做降维,方法是高斯过程潜变量模型。与现有的建模方法不同,我们将多核学习引入到降维过程中,以捕获高维数据的复杂分布。其次,对于动态潜变量的建模,我们使用了多核学习。我们没有对非线性投影映射和非线性动态函数的形式作强假设,我们的模型基于训练样本自动学习一个合适的非线性核,并且可以拟合多种时间序列。我们在CMU人体运动数据集上验证了该方法的有效性。实验结果表明,该建模方法具有良好的建模能力,能够预测人体运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-kernel based Gaussian process dynamic model for human motion modeling
In this paper, we focus on the problem of human motion modeling. We adopt the probabilistic modeling approach to over come the over-fitting problem in the parameter training process and propose a multi-kernel based Gaussian process dynamic model. First, we will do the dimensional reduction, and the method is the Gaussian process latent variable model. Different from existing modeling method, we introduce multikernel learning into the dimensional reduction process to capture the complex distribution of high-dimensional data. Second, for modeling the dynamic latent variable, we use a multi-kernel learning. We are not give a strong assumption on form of the nonlinear projection mapping and nonlinear dynamic function, our model automatically learn a suitable nonlinear kernel based on the training samples, and it can fit many kind of times series. We demonstrate the effectiveness of our method on the CMU human motion data set. The Experimental results show that our modeling method achieves promising modeling capability and is capable of predict human motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信