基于分区柱- qcm和人工神经网络的混合蒸汽识别

M. Rivai, A. Arifin, Eva Inaiyah Agustin
{"title":"基于分区柱- qcm和人工神经网络的混合蒸汽识别","authors":"M. Rivai, A. Arifin, Eva Inaiyah Agustin","doi":"10.1109/ICTS.2016.7910294","DOIUrl":null,"url":null,"abstract":"This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.","PeriodicalId":177275,"journal":{"name":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mixed vapour identification using partition column-QCMs and Artificial Neural Network\",\"authors\":\"M. Rivai, A. Arifin, Eva Inaiyah Agustin\",\"doi\":\"10.1109/ICTS.2016.7910294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.\",\"PeriodicalId\":177275,\"journal\":{\"name\":\"2016 International Conference on Information & Communication Technology and Systems (ICTS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Information & Communication Technology and Systems (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS.2016.7910294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2016.7910294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了用石英晶体微天平(QCM)传感器阵列和气相色谱隔板柱组成的电子鼻系统对混合蒸汽进行鉴别。聚合物涂层的qcm产生了特定的频移。采用反向传播算法对数据集进行人工神经网络处理作为模式识别。结果表明,该装置能够对苯、丙酮、异丙醇、非极性和极性混合物(即苯和丙酮)以及极性和极性混合物(即异丙醇和丙酮)五种蒸汽进行识别,识别率为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed vapour identification using partition column-QCMs and Artificial Neural Network
This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信