二维高分子材料的基本解决方案

Wx Zhang, Yg Chen
{"title":"二维高分子材料的基本解决方案","authors":"Wx Zhang, Yg Chen","doi":"10.1109/ICEDME50972.2020.00125","DOIUrl":null,"url":null,"abstract":"With the rapid development of science and technology, many new materials, such as various types of polymer, have been widely used in modern industry. These materials not only have the characteristics of elastic solid, but also have the characteristics of viscous fluid, namely viscoelastic materials. On the basis of the Laplace transform, the governing equations in the state space are established, and the symplectic solution method is constructed to solve the viscoelastic polymer problem..","PeriodicalId":155375,"journal":{"name":"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Solutions for 2D Polymer Materials\",\"authors\":\"Wx Zhang, Yg Chen\",\"doi\":\"10.1109/ICEDME50972.2020.00125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of science and technology, many new materials, such as various types of polymer, have been widely used in modern industry. These materials not only have the characteristics of elastic solid, but also have the characteristics of viscous fluid, namely viscoelastic materials. On the basis of the Laplace transform, the governing equations in the state space are established, and the symplectic solution method is constructed to solve the viscoelastic polymer problem..\",\"PeriodicalId\":155375,\"journal\":{\"name\":\"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEDME50972.2020.00125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDME50972.2020.00125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着科学技术的飞速发展,许多新材料,如各种类型的聚合物,在现代工业中得到了广泛的应用。这些材料既具有弹性固体的特性,又具有粘性流体的特性,即粘弹性材料。在拉普拉斯变换的基础上,建立了状态空间中的控制方程,构造了求解粘弹性聚合物问题的辛解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental Solutions for 2D Polymer Materials
With the rapid development of science and technology, many new materials, such as various types of polymer, have been widely used in modern industry. These materials not only have the characteristics of elastic solid, but also have the characteristics of viscous fluid, namely viscoelastic materials. On the basis of the Laplace transform, the governing equations in the state space are established, and the symplectic solution method is constructed to solve the viscoelastic polymer problem..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信