{"title":"基于噪声观测的二维自回归场估计自适应算法","authors":"A. Mahmoudi","doi":"10.1155/2014/247274","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of two-dimensional autoregressive (AR) estimation from noisy observations. The Yule-Walker equations are solved using adaptive steepest descent (SD) algorithm. Performance comparisons are made with other existing methods to demonstrate merits of the proposed method.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Algorithm for Estimation of Two-Dimensional Autoregressive Fields from Noisy Observations\",\"authors\":\"A. Mahmoudi\",\"doi\":\"10.1155/2014/247274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of two-dimensional autoregressive (AR) estimation from noisy observations. The Yule-Walker equations are solved using adaptive steepest descent (SD) algorithm. Performance comparisons are made with other existing methods to demonstrate merits of the proposed method.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/247274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/247274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Algorithm for Estimation of Two-Dimensional Autoregressive Fields from Noisy Observations
This paper deals with the problem of two-dimensional autoregressive (AR) estimation from noisy observations. The Yule-Walker equations are solved using adaptive steepest descent (SD) algorithm. Performance comparisons are made with other existing methods to demonstrate merits of the proposed method.