利用空间对应进行高光谱知识转移:对合成数据的评价

B. Bue, E. Merényi
{"title":"利用空间对应进行高光谱知识转移:对合成数据的评价","authors":"B. Bue, E. Merényi","doi":"10.1109/WHISPERS.2010.5594944","DOIUrl":null,"url":null,"abstract":"We describe a proof of concept for class knowledge transfer from a labeled hyperspectral image to an unlabeled image, captured with a different (hyper-/multi-spectral) sensor, when the spatial extents of the images partially overlap. By defining a set of spatio-spectral correspondences between the labeled source image and the unlabeled target image, we create a mapping between the images we can use to propagate labels from the source to the target image. This mapping allows us to classify the target image using the source labels without manually defining training labels in the target image. We evaluate the technique using state of the art synthetic hyperspectral imagery.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using spatial correspondences for hyperspectral knowledge transfer: Evaluation on synthetic data\",\"authors\":\"B. Bue, E. Merényi\",\"doi\":\"10.1109/WHISPERS.2010.5594944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a proof of concept for class knowledge transfer from a labeled hyperspectral image to an unlabeled image, captured with a different (hyper-/multi-spectral) sensor, when the spatial extents of the images partially overlap. By defining a set of spatio-spectral correspondences between the labeled source image and the unlabeled target image, we create a mapping between the images we can use to propagate labels from the source to the target image. This mapping allows us to classify the target image using the source labels without manually defining training labels in the target image. We evaluate the technique using state of the art synthetic hyperspectral imagery.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们描述了一个概念证明,当图像的空间范围部分重叠时,用不同的(超/多光谱)传感器捕获的类知识从标记的高光谱图像转移到未标记的图像。通过定义标记的源图像和未标记的目标图像之间的一组空间光谱对应关系,我们创建了图像之间的映射,我们可以使用从源图像到目标图像传播标签。这种映射允许我们使用源标签对目标图像进行分类,而无需在目标图像中手动定义训练标签。我们使用最先进的合成高光谱图像来评估该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using spatial correspondences for hyperspectral knowledge transfer: Evaluation on synthetic data
We describe a proof of concept for class knowledge transfer from a labeled hyperspectral image to an unlabeled image, captured with a different (hyper-/multi-spectral) sensor, when the spatial extents of the images partially overlap. By defining a set of spatio-spectral correspondences between the labeled source image and the unlabeled target image, we create a mapping between the images we can use to propagate labels from the source to the target image. This mapping allows us to classify the target image using the source labels without manually defining training labels in the target image. We evaluate the technique using state of the art synthetic hyperspectral imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信