基于ig特征补偿的语音情感识别

Chung-Hsien Wu, Ze-Jing Chuang
{"title":"基于ig特征补偿的语音情感识别","authors":"Chung-Hsien Wu, Ze-Jing Chuang","doi":"10.30019/IJCLCLP.200703.0005","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are extracted first. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is proposed to characterize feature space with better discriminability among emotional states. The compensation vector with respect to each emotional state is estimated using the Minimum Classification Error (MCE) algorithm. For the final emotional state decision, the compensated IG-based feature vectors are used to train the Gaussian Mixture Models (GMMs) and Continuous Support Vector Machine (CSVMs) for each emotional state. For GMMs, the emotional state with the GMM having the maximal likelihood ratio is determined as the final output. For CSVMs, the emotional state is determined according to the probability outputs from the CSVMs. The kernel function in CSVM is experimentally decided as a Radial basis function. A comparison in the experiments shows that the proposed IG-based feature compensation can obtain encouraging performance for emotion recognition.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Emotion Recognition from Speech Using IG-Based Feature Compensation\",\"authors\":\"Chung-Hsien Wu, Ze-Jing Chuang\",\"doi\":\"10.30019/IJCLCLP.200703.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are extracted first. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is proposed to characterize feature space with better discriminability among emotional states. The compensation vector with respect to each emotional state is estimated using the Minimum Classification Error (MCE) algorithm. For the final emotional state decision, the compensated IG-based feature vectors are used to train the Gaussian Mixture Models (GMMs) and Continuous Support Vector Machine (CSVMs) for each emotional state. For GMMs, the emotional state with the GMM having the maximal likelihood ratio is determined as the final output. For CSVMs, the emotional state is determined according to the probability outputs from the CSVMs. The kernel function in CSVM is experimentally decided as a Radial basis function. A comparison in the experiments shows that the proposed IG-based feature compensation can obtain encouraging performance for emotion recognition.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200703.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200703.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于语音信号特征补偿的情感识别方法。在该方法中,首先提取输入语音信号的语调组(IGs)。然后提取每个选定语调组的语音特征。在假设不同情绪状态下特征空间之间存在线性映射的前提下,提出了一种特征补偿方法来表征不同情绪状态下的特征空间。使用最小分类误差(MCE)算法估计每个情绪状态的补偿向量。对于最终的情绪状态决策,使用补偿的基于ig的特征向量来训练每种情绪状态的高斯混合模型(GMMs)和连续支持向量机(csvm)。对于GMM,确定具有最大似然比的GMM的情绪状态作为最终输出。对于csvm,情绪状态是根据csvm的概率输出来确定的。实验确定了CSVM的核函数为径向基函数。实验对比表明,本文提出的基于ig的特征补偿方法能够获得令人满意的情感识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion Recognition from Speech Using IG-Based Feature Compensation
This paper presents an approach to feature compensation for emotion recognition from speech signals. In this approach, the intonation groups (IGs) of the input speech signals are extracted first. The speech features in each selected intonation group are then extracted. With the assumption of linear mapping between feature spaces in different emotional states, a feature compensation approach is proposed to characterize feature space with better discriminability among emotional states. The compensation vector with respect to each emotional state is estimated using the Minimum Classification Error (MCE) algorithm. For the final emotional state decision, the compensated IG-based feature vectors are used to train the Gaussian Mixture Models (GMMs) and Continuous Support Vector Machine (CSVMs) for each emotional state. For GMMs, the emotional state with the GMM having the maximal likelihood ratio is determined as the final output. For CSVMs, the emotional state is determined according to the probability outputs from the CSVMs. The kernel function in CSVM is experimentally decided as a Radial basis function. A comparison in the experiments shows that the proposed IG-based feature compensation can obtain encouraging performance for emotion recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信