{"title":"基于上下文感知的多视角注意网络情感原因提取","authors":"Xinglin Xiao, Penghui Wei, W. Mao, Lei Wang","doi":"10.1109/ISI.2019.8823225","DOIUrl":null,"url":null,"abstract":"Emotion cause extraction aims at automatically identifying cause clauses for a certain emotion expressed in a document. It is an important task in emotion analysis since it helps form a deeper understanding of emotion text. Detecting potential causes of user emotion in online contents is beneficial to public opinion monitoring, government decision-making, and other security-related applications. Existing studies treat this task as a binary clause-level classification problem, which considers each clause separately and omits the context information of clauses. Moreover, previous work only models emotion-dependent linguistic representations of clauses but ignores emotion-independent features in clauses including cause indicators. To address the above two issues, we formalize this task as a sequence labeling problem and propose the COntext-aware Multi-View attention networks (COMV) for emotion cause extraction. Our proposed model integrates context information and learns multi-view clause representations. Experimental results show that our model outperforms existing state-of-the-art methods.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Context-Aware Multi-View Attention Networks for Emotion Cause Extraction\",\"authors\":\"Xinglin Xiao, Penghui Wei, W. Mao, Lei Wang\",\"doi\":\"10.1109/ISI.2019.8823225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion cause extraction aims at automatically identifying cause clauses for a certain emotion expressed in a document. It is an important task in emotion analysis since it helps form a deeper understanding of emotion text. Detecting potential causes of user emotion in online contents is beneficial to public opinion monitoring, government decision-making, and other security-related applications. Existing studies treat this task as a binary clause-level classification problem, which considers each clause separately and omits the context information of clauses. Moreover, previous work only models emotion-dependent linguistic representations of clauses but ignores emotion-independent features in clauses including cause indicators. To address the above two issues, we formalize this task as a sequence labeling problem and propose the COntext-aware Multi-View attention networks (COMV) for emotion cause extraction. Our proposed model integrates context information and learns multi-view clause representations. Experimental results show that our model outperforms existing state-of-the-art methods.\",\"PeriodicalId\":156130,\"journal\":{\"name\":\"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2019.8823225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context-Aware Multi-View Attention Networks for Emotion Cause Extraction
Emotion cause extraction aims at automatically identifying cause clauses for a certain emotion expressed in a document. It is an important task in emotion analysis since it helps form a deeper understanding of emotion text. Detecting potential causes of user emotion in online contents is beneficial to public opinion monitoring, government decision-making, and other security-related applications. Existing studies treat this task as a binary clause-level classification problem, which considers each clause separately and omits the context information of clauses. Moreover, previous work only models emotion-dependent linguistic representations of clauses but ignores emotion-independent features in clauses including cause indicators. To address the above two issues, we formalize this task as a sequence labeling problem and propose the COntext-aware Multi-View attention networks (COMV) for emotion cause extraction. Our proposed model integrates context information and learns multi-view clause representations. Experimental results show that our model outperforms existing state-of-the-art methods.