{"title":"游戏设计和玩法策略的互动验证","authors":"Dimitris Kalles, Eirini Ntoutsi","doi":"10.1109/TAI.2002.1180834","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is considered as one of the most suitable and prominent methods for solving game problems due to its capability to discover good strategies by extended se self-training and limited initial knowledge. In this paper we elaborate on using reinforcement learning for verifying game designs and playing strategies. Specifically, we examine a new strategy game that has been trained on self-playing games and analyze the game performance after human interaction. We demonstrate, through selected game instances, the impact of human interference to the learning process, and eventually the game design.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Interactive verification of game design and playing strategies\",\"authors\":\"Dimitris Kalles, Eirini Ntoutsi\",\"doi\":\"10.1109/TAI.2002.1180834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning is considered as one of the most suitable and prominent methods for solving game problems due to its capability to discover good strategies by extended se self-training and limited initial knowledge. In this paper we elaborate on using reinforcement learning for verifying game designs and playing strategies. Specifically, we examine a new strategy game that has been trained on self-playing games and analyze the game performance after human interaction. We demonstrate, through selected game instances, the impact of human interference to the learning process, and eventually the game design.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactive verification of game design and playing strategies
Reinforcement learning is considered as one of the most suitable and prominent methods for solving game problems due to its capability to discover good strategies by extended se self-training and limited initial knowledge. In this paper we elaborate on using reinforcement learning for verifying game designs and playing strategies. Specifically, we examine a new strategy game that has been trained on self-playing games and analyze the game performance after human interaction. We demonstrate, through selected game instances, the impact of human interference to the learning process, and eventually the game design.