基于区域和内容的图像检索使用先进的图像处理技术

T. Sedghi, Majid Fakheri, M. Shayesteh
{"title":"基于区域和内容的图像检索使用先进的图像处理技术","authors":"T. Sedghi, Majid Fakheri, M. Shayesteh","doi":"10.1109/IRANIANMVIP.2010.5941152","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to enhance retrieval performance and also to provide a better similarity distance computation. We develop a modified clustering algorithm for image retrieval where hierarchical algorithm is used to generate the initial number of clusters and the cluster centres. Experimental results show that the proposed method yields higher retrieval accuracy compared to the several conventional methods. Our work offers improvement in image segmentation and retrieval accuracy.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Region and content based image retrieval using advanced image processing techniques\",\"authors\":\"T. Sedghi, Majid Fakheri, M. Shayesteh\",\"doi\":\"10.1109/IRANIANMVIP.2010.5941152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is to enhance retrieval performance and also to provide a better similarity distance computation. We develop a modified clustering algorithm for image retrieval where hierarchical algorithm is used to generate the initial number of clusters and the cluster centres. Experimental results show that the proposed method yields higher retrieval accuracy compared to the several conventional methods. Our work offers improvement in image segmentation and retrieval accuracy.\",\"PeriodicalId\":350778,\"journal\":{\"name\":\"2010 6th Iranian Conference on Machine Vision and Image Processing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 6th Iranian Conference on Machine Vision and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2010.5941152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的研究重点是提高检索性能,并提供更好的相似距离计算。我们开发了一种改进的聚类算法用于图像检索,其中分层算法用于生成初始数量的聚类和聚类中心。实验结果表明,与几种传统方法相比,该方法具有更高的检索精度。我们的工作提高了图像分割和检索的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region and content based image retrieval using advanced image processing techniques
The focus of this paper is to enhance retrieval performance and also to provide a better similarity distance computation. We develop a modified clustering algorithm for image retrieval where hierarchical algorithm is used to generate the initial number of clusters and the cluster centres. Experimental results show that the proposed method yields higher retrieval accuracy compared to the several conventional methods. Our work offers improvement in image segmentation and retrieval accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信