Gaurav Mittal, Kaushal B. Yagnik, Mohit Garg, N. C. Krishnan
{"title":"SpotGarbage:使用深度学习检测垃圾的智能手机应用程序","authors":"Gaurav Mittal, Kaushal B. Yagnik, Mohit Garg, N. C. Krishnan","doi":"10.1145/2971648.2971731","DOIUrl":null,"url":null,"abstract":"Maintaining a clean and hygienic civic environment is an indispensable yet formidable task, especially in developing countries. With the aim of engaging citizens to track and report on their neighborhoods, this paper presents a novel smartphone app, called SpotGarbage, which detects and coarsely segments garbage regions in a user-clicked geo-tagged image. The app utilizes the proposed deep architecture of fully convolutional networks for detecting garbage in images. The model has been trained on a newly introduced Garbage In Images (GINI) dataset, achieving a mean accuracy of 87.69%. The paper also proposes optimizations in the network architecture resulting in a reduction of 87.9% in memory usage and 96.8% in prediction time with no loss in accuracy, facilitating its usage in resource constrained smartphones.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"169","resultStr":"{\"title\":\"SpotGarbage: smartphone app to detect garbage using deep learning\",\"authors\":\"Gaurav Mittal, Kaushal B. Yagnik, Mohit Garg, N. C. Krishnan\",\"doi\":\"10.1145/2971648.2971731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maintaining a clean and hygienic civic environment is an indispensable yet formidable task, especially in developing countries. With the aim of engaging citizens to track and report on their neighborhoods, this paper presents a novel smartphone app, called SpotGarbage, which detects and coarsely segments garbage regions in a user-clicked geo-tagged image. The app utilizes the proposed deep architecture of fully convolutional networks for detecting garbage in images. The model has been trained on a newly introduced Garbage In Images (GINI) dataset, achieving a mean accuracy of 87.69%. The paper also proposes optimizations in the network architecture resulting in a reduction of 87.9% in memory usage and 96.8% in prediction time with no loss in accuracy, facilitating its usage in resource constrained smartphones.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"169\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SpotGarbage: smartphone app to detect garbage using deep learning
Maintaining a clean and hygienic civic environment is an indispensable yet formidable task, especially in developing countries. With the aim of engaging citizens to track and report on their neighborhoods, this paper presents a novel smartphone app, called SpotGarbage, which detects and coarsely segments garbage regions in a user-clicked geo-tagged image. The app utilizes the proposed deep architecture of fully convolutional networks for detecting garbage in images. The model has been trained on a newly introduced Garbage In Images (GINI) dataset, achieving a mean accuracy of 87.69%. The paper also proposes optimizations in the network architecture resulting in a reduction of 87.9% in memory usage and 96.8% in prediction time with no loss in accuracy, facilitating its usage in resource constrained smartphones.