使用非线性最小二乘的z域多项式的谱分解

T. Moir
{"title":"使用非线性最小二乘的z域多项式的谱分解","authors":"T. Moir","doi":"10.1109/ICDSP.2014.6900705","DOIUrl":null,"url":null,"abstract":"A new recursive method for spectral factorizing polynomials is given. The method uses non-linear least-squares. The method is simple to implement and has applications in many areas of adaptive filtering, system identification and control. The optimization method is not new but to date has not been applied to spectral factorization. Convergence is much faster than ordinary root finding algorithms. (superlinear versus quadratic).","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral factorization of z-domain polynomials using non-linear least-squares\",\"authors\":\"T. Moir\",\"doi\":\"10.1109/ICDSP.2014.6900705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new recursive method for spectral factorizing polynomials is given. The method uses non-linear least-squares. The method is simple to implement and has applications in many areas of adaptive filtering, system identification and control. The optimization method is not new but to date has not been applied to spectral factorization. Convergence is much faster than ordinary root finding algorithms. (superlinear versus quadratic).\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了谱分解多项式的一种新的递归方法。该方法采用非线性最小二乘。该方法实现简单,在自适应滤波、系统辨识和控制等领域有广泛的应用。该优化方法并不新颖,但迄今尚未应用于谱分解。收敛速度比普通的寻根算法快得多。(超线性vs二次)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral factorization of z-domain polynomials using non-linear least-squares
A new recursive method for spectral factorizing polynomials is given. The method uses non-linear least-squares. The method is simple to implement and has applications in many areas of adaptive filtering, system identification and control. The optimization method is not new but to date has not been applied to spectral factorization. Convergence is much faster than ordinary root finding algorithms. (superlinear versus quadratic).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信