具有强非线性和记忆效应的功率放大器的不同数字预失真模型识别方法

Siqi Wang, Wenhui Cao, T. Eriksson
{"title":"具有强非线性和记忆效应的功率放大器的不同数字预失真模型识别方法","authors":"Siqi Wang, Wenhui Cao, T. Eriksson","doi":"10.1109/IWS49314.2020.9360062","DOIUrl":null,"url":null,"abstract":"Different methods have been used to identify a digital predistortion (DPD) model coefficients in power amplifier (PA) linearization, especially direct and indirect learning architecture (DLA/ILA), and iterative learning control (ILC) technique, etc. A comparison is made in this paper under the scenario of a PA with strong nonlinearity. Analysis of DLA and ILC shows their similarity. However DLA works only with linear-in-parameter models, excluding the new emerging neural network models which has shown a good linearization accuracy with ILC according to experimental results.","PeriodicalId":301959,"journal":{"name":"2020 IEEE MTT-S International Wireless Symposium (IWS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification Methods with Different Digital Predistortion Models for Power Amplifiers with Strong Nonlinearity and Memory Effects\",\"authors\":\"Siqi Wang, Wenhui Cao, T. Eriksson\",\"doi\":\"10.1109/IWS49314.2020.9360062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different methods have been used to identify a digital predistortion (DPD) model coefficients in power amplifier (PA) linearization, especially direct and indirect learning architecture (DLA/ILA), and iterative learning control (ILC) technique, etc. A comparison is made in this paper under the scenario of a PA with strong nonlinearity. Analysis of DLA and ILC shows their similarity. However DLA works only with linear-in-parameter models, excluding the new emerging neural network models which has shown a good linearization accuracy with ILC according to experimental results.\",\"PeriodicalId\":301959,\"journal\":{\"name\":\"2020 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWS49314.2020.9360062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS49314.2020.9360062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在功率放大器(PA)线性化中,数字预失真(DPD)模型系数的识别方法有很多,尤其是直接和间接学习结构(DLA/ILA)和迭代学习控制(ILC)技术等。本文在具有强非线性的PA情况下进行了比较。对DLA和ILC的分析显示了它们的相似性。然而,DLA只适用于线性参数模型,而不包括新兴的神经网络模型,根据实验结果,神经网络模型显示出良好的线性化精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification Methods with Different Digital Predistortion Models for Power Amplifiers with Strong Nonlinearity and Memory Effects
Different methods have been used to identify a digital predistortion (DPD) model coefficients in power amplifier (PA) linearization, especially direct and indirect learning architecture (DLA/ILA), and iterative learning control (ILC) technique, etc. A comparison is made in this paper under the scenario of a PA with strong nonlinearity. Analysis of DLA and ILC shows their similarity. However DLA works only with linear-in-parameter models, excluding the new emerging neural network models which has shown a good linearization accuracy with ILC according to experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信