无监督图像分类表示的颜色提取模块

Alexandru-Toma Andrei, O. Grigore
{"title":"无监督图像分类表示的颜色提取模块","authors":"Alexandru-Toma Andrei, O. Grigore","doi":"10.1109/ATEE58038.2023.10108115","DOIUrl":null,"url":null,"abstract":"Even though working with unlabeled data has the main advantages of lower preprocessing time and resources, the drawback is that the algorithms implemented have no connection between the output and ground truth, therefore is extremely hard to represent the results. This paper proposes a deployable stand-alone module for extracting the real color of the identified classes for a more intuitive representation of the final results.","PeriodicalId":398894,"journal":{"name":"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Color Extraction Module for Unsupervised Image Classification Representation\",\"authors\":\"Alexandru-Toma Andrei, O. Grigore\",\"doi\":\"10.1109/ATEE58038.2023.10108115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even though working with unlabeled data has the main advantages of lower preprocessing time and resources, the drawback is that the algorithms implemented have no connection between the output and ground truth, therefore is extremely hard to represent the results. This paper proposes a deployable stand-alone module for extracting the real color of the identified classes for a more intuitive representation of the final results.\",\"PeriodicalId\":398894,\"journal\":{\"name\":\"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATEE58038.2023.10108115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 13th International Symposium on Advanced Topics in Electrical Engineering (ATEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATEE58038.2023.10108115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管处理未标记数据的主要优点是预处理时间和资源较少,但缺点是实现的算法在输出和基本事实之间没有联系,因此非常难以表示结果。本文提出了一个可部署的独立模块,用于提取识别类的真实颜色,以便更直观地表示最终结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Extraction Module for Unsupervised Image Classification Representation
Even though working with unlabeled data has the main advantages of lower preprocessing time and resources, the drawback is that the algorithms implemented have no connection between the output and ground truth, therefore is extremely hard to represent the results. This paper proposes a deployable stand-alone module for extracting the real color of the identified classes for a more intuitive representation of the final results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信