{"title":"功率谱盲测的多共集采样","authors":"D. D. Ariananda, G. Leus, Z. Tian","doi":"10.1109/ICDSP.2011.6005003","DOIUrl":null,"url":null,"abstract":"Power spectrum blind sampling (PSBS) consists of a sampling procedure and a reconstruction method that is able to recover the unknown power spectrum of a random signal from the obtained sub-Nyquist-rate samples. It differs from spectrum blind sampling (SBS) that aims to recover the spectrum instead of the power spectrum of the signal. In this paper, a PSBS solution is first presented based on a periodic sampling procedure. Then, a multi-coset implementation for this sampling procedure is developed by solving the so-called minimal sparse ruler problem, and the coprime sampling technique is tailored to fit into the PSBS framework as well. It is shown that the proposed multi-coset implementation based on minimal sparse rulers offers advantages over coprime sampling in terms of reduced sampling rates, increased flexibility and an extended range of estimated auto-correlation lags. These benefits arise without putting any sparsity constraint on the power spectrum. Application to sparse power spectrum recovery is also illustrated.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Multi-coset sampling for power spectrum blind sensing\",\"authors\":\"D. D. Ariananda, G. Leus, Z. Tian\",\"doi\":\"10.1109/ICDSP.2011.6005003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power spectrum blind sampling (PSBS) consists of a sampling procedure and a reconstruction method that is able to recover the unknown power spectrum of a random signal from the obtained sub-Nyquist-rate samples. It differs from spectrum blind sampling (SBS) that aims to recover the spectrum instead of the power spectrum of the signal. In this paper, a PSBS solution is first presented based on a periodic sampling procedure. Then, a multi-coset implementation for this sampling procedure is developed by solving the so-called minimal sparse ruler problem, and the coprime sampling technique is tailored to fit into the PSBS framework as well. It is shown that the proposed multi-coset implementation based on minimal sparse rulers offers advantages over coprime sampling in terms of reduced sampling rates, increased flexibility and an extended range of estimated auto-correlation lags. These benefits arise without putting any sparsity constraint on the power spectrum. Application to sparse power spectrum recovery is also illustrated.\",\"PeriodicalId\":360702,\"journal\":{\"name\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2011.6005003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6005003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-coset sampling for power spectrum blind sensing
Power spectrum blind sampling (PSBS) consists of a sampling procedure and a reconstruction method that is able to recover the unknown power spectrum of a random signal from the obtained sub-Nyquist-rate samples. It differs from spectrum blind sampling (SBS) that aims to recover the spectrum instead of the power spectrum of the signal. In this paper, a PSBS solution is first presented based on a periodic sampling procedure. Then, a multi-coset implementation for this sampling procedure is developed by solving the so-called minimal sparse ruler problem, and the coprime sampling technique is tailored to fit into the PSBS framework as well. It is shown that the proposed multi-coset implementation based on minimal sparse rulers offers advantages over coprime sampling in terms of reduced sampling rates, increased flexibility and an extended range of estimated auto-correlation lags. These benefits arise without putting any sparsity constraint on the power spectrum. Application to sparse power spectrum recovery is also illustrated.