估计两个矢量之间欧几里得距离的一种混合方法

Chinchen Chang, Po-Wen Lu, J. Hsiao
{"title":"估计两个矢量之间欧几里得距离的一种混合方法","authors":"Chinchen Chang, Po-Wen Lu, J. Hsiao","doi":"10.1109/CW.2002.1180878","DOIUrl":null,"url":null,"abstract":"We propose an alternative method for estimating the Euclidean distance between an image block and a codeword. Our method incorporates the reduced code look-up table (RCLUT) method with an RCLUT-like method to allow alternative selection in the encoding phase in vector quantization (VQ). This method can speed up computation for distance estimation. It provides better image quality than the RCLUT method at the cost of extra storage. According to experimental results, our method provides better image quality than the RCLUT method.","PeriodicalId":376322,"journal":{"name":"First International Symposium on Cyber Worlds, 2002. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A hybrid method for estimating the Euclidean distance between two vectors\",\"authors\":\"Chinchen Chang, Po-Wen Lu, J. Hsiao\",\"doi\":\"10.1109/CW.2002.1180878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an alternative method for estimating the Euclidean distance between an image block and a codeword. Our method incorporates the reduced code look-up table (RCLUT) method with an RCLUT-like method to allow alternative selection in the encoding phase in vector quantization (VQ). This method can speed up computation for distance estimation. It provides better image quality than the RCLUT method at the cost of extra storage. According to experimental results, our method provides better image quality than the RCLUT method.\",\"PeriodicalId\":376322,\"journal\":{\"name\":\"First International Symposium on Cyber Worlds, 2002. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Symposium on Cyber Worlds, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2002.1180878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Symposium on Cyber Worlds, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2002.1180878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种替代方法来估计图像块和码字之间的欧几里得距离。我们的方法结合了简化代码查找表(RCLUT)方法和类似RCLUT的方法,允许在矢量量化(VQ)的编码阶段进行替代选择。该方法可以加快距离估计的计算速度。它提供了比RCLUT方法更好的图像质量,但代价是额外的存储空间。实验结果表明,该方法的图像质量优于RCLUT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid method for estimating the Euclidean distance between two vectors
We propose an alternative method for estimating the Euclidean distance between an image block and a codeword. Our method incorporates the reduced code look-up table (RCLUT) method with an RCLUT-like method to allow alternative selection in the encoding phase in vector quantization (VQ). This method can speed up computation for distance estimation. It provides better image quality than the RCLUT method at the cost of extra storage. According to experimental results, our method provides better image quality than the RCLUT method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信