一个用于资源需求估计的库

Simon Spinner, G. Casale, Xiaoyun Zhu, Samuel Kounev
{"title":"一个用于资源需求估计的库","authors":"Simon Spinner, G. Casale, Xiaoyun Zhu, Samuel Kounev","doi":"10.1145/2568088.2576093","DOIUrl":null,"url":null,"abstract":"When creating a performance model, it is necessary to quantify the amount of resources consumed by an application serving individual requests. In distributed enterprise systems, these resource demands usually cannot be observed directly, their estimation is a major challenge. Different statistical approaches to resource demand estimation based on monitoring data have been proposed, e.g., using linear regression or Kalman filtering techniques. In this paper, we present LibReDE, a library of ready-to-use implementations of approaches to resource demand estimation that can be used for online and offline analysis. It is the first publicly available tool for this task and aims at supporting performance engineers during performance model construction. The library enables the quick comparison of the estimation accuracy of different approaches in a given context and thus helps to select an optimal one.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"LibReDE: a library for resource demand estimation\",\"authors\":\"Simon Spinner, G. Casale, Xiaoyun Zhu, Samuel Kounev\",\"doi\":\"10.1145/2568088.2576093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When creating a performance model, it is necessary to quantify the amount of resources consumed by an application serving individual requests. In distributed enterprise systems, these resource demands usually cannot be observed directly, their estimation is a major challenge. Different statistical approaches to resource demand estimation based on monitoring data have been proposed, e.g., using linear regression or Kalman filtering techniques. In this paper, we present LibReDE, a library of ready-to-use implementations of approaches to resource demand estimation that can be used for online and offline analysis. It is the first publicly available tool for this task and aims at supporting performance engineers during performance model construction. The library enables the quick comparison of the estimation accuracy of different approaches in a given context and thus helps to select an optimal one.\",\"PeriodicalId\":243233,\"journal\":{\"name\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM/SPEC international conference on Performance engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2568088.2576093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2576093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

在创建性能模型时,有必要量化服务于单个请求的应用程序所消耗的资源量。在分布式企业系统中,这些资源需求通常不能直接观察到,它们的估计是一个主要的挑战。已经提出了根据监测数据估计资源需求的不同统计方法,例如使用线性回归或卡尔曼滤波技术。在本文中,我们提出了LibReDE,这是一个可用于在线和离线分析的资源需求估计方法的现成实现库。它是用于此任务的第一个公开可用的工具,旨在在性能模型构建期间为性能工程师提供支持。该库可以快速比较给定环境下不同方法的估计精度,从而帮助选择最优方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LibReDE: a library for resource demand estimation
When creating a performance model, it is necessary to quantify the amount of resources consumed by an application serving individual requests. In distributed enterprise systems, these resource demands usually cannot be observed directly, their estimation is a major challenge. Different statistical approaches to resource demand estimation based on monitoring data have been proposed, e.g., using linear regression or Kalman filtering techniques. In this paper, we present LibReDE, a library of ready-to-use implementations of approaches to resource demand estimation that can be used for online and offline analysis. It is the first publicly available tool for this task and aims at supporting performance engineers during performance model construction. The library enables the quick comparison of the estimation accuracy of different approaches in a given context and thus helps to select an optimal one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信