混沌量子蜂群和支持向量回归在部分遮阳条件下多峰最大功率点跟踪控制中的应用

Xiang-ming Gao, Diankuan Ding, Shifeng Yang, Mingkun Huang
{"title":"混沌量子蜂群和支持向量回归在部分遮阳条件下多峰最大功率点跟踪控制中的应用","authors":"Xiang-ming Gao, Diankuan Ding, Shifeng Yang, Mingkun Huang","doi":"10.1142/s1469026820500145","DOIUrl":null,"url":null,"abstract":"In view of the multipeak characteristics of a photovoltaic (PV) array P–V curve under local shadow conditions and that the traditional maximum power point tracking (MPPT) algorithm cannot effectively track the maximum power point of the curve, a multipeak MPPT algorithm based on a chaotic quantum bee colony and support vector regression (SVR) is proposed. By constructing and analyzing the mathematical model of a photovoltaic array under a local shadow, the P–V characteristic equation of the photovoltaic array is obtained. The improved strategy of the artificial bee colony algorithm is studied, and the improved chaotic quantum bee colony algorithm (CQABC) is applied to the optimization of SVR parameters; this application improves the accuracy and generalization performance of the maximum power point prediction model based on SVR. The calculation process of the multipeak MPPT algorithm based on CQABC-SVR is given, and the effectiveness of the algorithm is verified by simulation and testing. The experimental results show that the algorithm can accurately track the global maximum power point under uniform illumination or local shadow conditions, effectively overcoming the problem of traditional MPPT algorithms easily falling into local extrema.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of a Chaotic Quantum Bee Colony and Support Vector Regression to Multipeak Maximum Power Point Tracking Control Method Under Partial Shading Conditions\",\"authors\":\"Xiang-ming Gao, Diankuan Ding, Shifeng Yang, Mingkun Huang\",\"doi\":\"10.1142/s1469026820500145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the multipeak characteristics of a photovoltaic (PV) array P–V curve under local shadow conditions and that the traditional maximum power point tracking (MPPT) algorithm cannot effectively track the maximum power point of the curve, a multipeak MPPT algorithm based on a chaotic quantum bee colony and support vector regression (SVR) is proposed. By constructing and analyzing the mathematical model of a photovoltaic array under a local shadow, the P–V characteristic equation of the photovoltaic array is obtained. The improved strategy of the artificial bee colony algorithm is studied, and the improved chaotic quantum bee colony algorithm (CQABC) is applied to the optimization of SVR parameters; this application improves the accuracy and generalization performance of the maximum power point prediction model based on SVR. The calculation process of the multipeak MPPT algorithm based on CQABC-SVR is given, and the effectiveness of the algorithm is verified by simulation and testing. The experimental results show that the algorithm can accurately track the global maximum power point under uniform illumination or local shadow conditions, effectively overcoming the problem of traditional MPPT algorithms easily falling into local extrema.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对光伏(PV)阵列P-V曲线在局部阴影条件下的多峰特性,以及传统最大功率点跟踪(MPPT)算法不能有效跟踪曲线的最大功率点,提出了一种基于混沌量子蜂群和支持向量回归(SVR)的多峰MPPT算法。通过建立和分析局部阴影下光伏阵列的数学模型,得到了光伏阵列的P-V特性方程。研究了人工蜂群算法的改进策略,将改进混沌量子蜂群算法(CQABC)应用于SVR参数的优化;该应用提高了基于SVR的最大功率点预测模型的精度和泛化性能。给出了基于CQABC-SVR的多峰MPPT算法的计算过程,并通过仿真和测试验证了算法的有效性。实验结果表明,该算法在均匀光照或局部阴影条件下均能准确跟踪全局最大功率点,有效克服了传统MPPT算法容易陷入局部极值的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a Chaotic Quantum Bee Colony and Support Vector Regression to Multipeak Maximum Power Point Tracking Control Method Under Partial Shading Conditions
In view of the multipeak characteristics of a photovoltaic (PV) array P–V curve under local shadow conditions and that the traditional maximum power point tracking (MPPT) algorithm cannot effectively track the maximum power point of the curve, a multipeak MPPT algorithm based on a chaotic quantum bee colony and support vector regression (SVR) is proposed. By constructing and analyzing the mathematical model of a photovoltaic array under a local shadow, the P–V characteristic equation of the photovoltaic array is obtained. The improved strategy of the artificial bee colony algorithm is studied, and the improved chaotic quantum bee colony algorithm (CQABC) is applied to the optimization of SVR parameters; this application improves the accuracy and generalization performance of the maximum power point prediction model based on SVR. The calculation process of the multipeak MPPT algorithm based on CQABC-SVR is given, and the effectiveness of the algorithm is verified by simulation and testing. The experimental results show that the algorithm can accurately track the global maximum power point under uniform illumination or local shadow conditions, effectively overcoming the problem of traditional MPPT algorithms easily falling into local extrema.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信