数据驱动信号识别——一种机器学习在实时微震监测中的应用

A. Shamsa, M. Paydayesh
{"title":"数据驱动信号识别——一种机器学习在实时微震监测中的应用","authors":"A. Shamsa, M. Paydayesh","doi":"10.3997/2214-4609.201803007","DOIUrl":null,"url":null,"abstract":"A simple and robust machine learning technique is applied to automate signal detection and analyse recorded microseismic data. The method’s performance is tested and evaluated on real data. The fracture signals were well-detected using the proposed workflow and techniques when more data were introduced. In contrast to conventional methods, the techniques implemented herein described work on training the model prediction with additional data without restarting from the beginning, making them viable for continuous online learning. This method attempts to remove the burden of labour-intensive processing of microseismic data and replace it with a faster, cheaper, and more accurate way of achieving signal detection.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Signal Recognition- A Machine Learning Application For The Real-Time Microseismic Monitoring\",\"authors\":\"A. Shamsa, M. Paydayesh\",\"doi\":\"10.3997/2214-4609.201803007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and robust machine learning technique is applied to automate signal detection and analyse recorded microseismic data. The method’s performance is tested and evaluated on real data. The fracture signals were well-detected using the proposed workflow and techniques when more data were introduced. In contrast to conventional methods, the techniques implemented herein described work on training the model prediction with additional data without restarting from the beginning, making them viable for continuous online learning. This method attempts to remove the burden of labour-intensive processing of microseismic data and replace it with a faster, cheaper, and more accurate way of achieving signal detection.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种简单而强大的机器学习技术应用于自动信号检测和分析记录的微地震数据。在实际数据上对该方法的性能进行了测试和评价。当引入更多数据时,使用所提出的工作流程和技术可以很好地检测到裂缝信号。与传统方法相比,本文所描述的技术使用额外的数据来训练模型预测,而无需从头开始,这使得它们适用于持续的在线学习。该方法试图消除处理微地震数据的劳动密集型负担,代之以更快、更便宜、更准确的信号检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Signal Recognition- A Machine Learning Application For The Real-Time Microseismic Monitoring
A simple and robust machine learning technique is applied to automate signal detection and analyse recorded microseismic data. The method’s performance is tested and evaluated on real data. The fracture signals were well-detected using the proposed workflow and techniques when more data were introduced. In contrast to conventional methods, the techniques implemented herein described work on training the model prediction with additional data without restarting from the beginning, making them viable for continuous online learning. This method attempts to remove the burden of labour-intensive processing of microseismic data and replace it with a faster, cheaper, and more accurate way of achieving signal detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信