Learned FIB:不进行最长前缀匹配的快速IP转发

Shunsuke Higuchi, Y. Koizumi, Junji Takemasa, A. Tagami, T. Hasegawa
{"title":"Learned FIB:不进行最长前缀匹配的快速IP转发","authors":"Shunsuke Higuchi, Y. Koizumi, Junji Takemasa, A. Tagami, T. Hasegawa","doi":"10.1109/ICNP52444.2021.9651956","DOIUrl":null,"url":null,"abstract":"This paper proposes an IP forwarding information base (FIB) encoding leveraging an emerging data structure called a learned index , which uses machine learning to associate key-position pairs in a key-value store. A learned index for FIB lookups is expected to yield a more compact representation and faster lookups compared to existing FIBs based on tries or hash tables, at the cost of efficient FIB updates, which is difficult to support with a learned index. We optimize our implementation for lookup speed, exploiting that for efficient FIB lookups it is enough to approximate the key-position pairs with a piece-wise linear function, instead of having to learn the key-position pairs. The experiments using real BGP routing information snapshots suggest that the size of the proposed FIB is compact and lookup speed is sufficiently fast regardless of the length of matched prefixes.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learned FIB: Fast IP Forwarding without Longest Prefix Matching\",\"authors\":\"Shunsuke Higuchi, Y. Koizumi, Junji Takemasa, A. Tagami, T. Hasegawa\",\"doi\":\"10.1109/ICNP52444.2021.9651956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an IP forwarding information base (FIB) encoding leveraging an emerging data structure called a learned index , which uses machine learning to associate key-position pairs in a key-value store. A learned index for FIB lookups is expected to yield a more compact representation and faster lookups compared to existing FIBs based on tries or hash tables, at the cost of efficient FIB updates, which is difficult to support with a learned index. We optimize our implementation for lookup speed, exploiting that for efficient FIB lookups it is enough to approximate the key-position pairs with a piece-wise linear function, instead of having to learn the key-position pairs. The experiments using real BGP routing information snapshots suggest that the size of the proposed FIB is compact and lookup speed is sufficiently fast regardless of the length of matched prefixes.\",\"PeriodicalId\":343813,\"journal\":{\"name\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP52444.2021.9651956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种IP转发信息库(FIB)编码,利用一种新兴的数据结构称为学习索引,它使用机器学习来关联键值存储中的键位置对。与基于尝试或哈希表的现有FIB相比,用于FIB查找的学习索引预计会产生更紧凑的表示和更快的查找,但代价是FIB更新效率低,而学习索引很难支持这一点。我们优化了查找速度的实现,利用有效的FIB查找,用分段线性函数近似键位置对就足够了,而不必学习键位置对。使用真实BGP路由信息快照的实验表明,无论匹配前缀的长度如何,所提出的FIB都具有紧凑的大小和足够快的查找速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learned FIB: Fast IP Forwarding without Longest Prefix Matching
This paper proposes an IP forwarding information base (FIB) encoding leveraging an emerging data structure called a learned index , which uses machine learning to associate key-position pairs in a key-value store. A learned index for FIB lookups is expected to yield a more compact representation and faster lookups compared to existing FIBs based on tries or hash tables, at the cost of efficient FIB updates, which is difficult to support with a learned index. We optimize our implementation for lookup speed, exploiting that for efficient FIB lookups it is enough to approximate the key-position pairs with a piece-wise linear function, instead of having to learn the key-position pairs. The experiments using real BGP routing information snapshots suggest that the size of the proposed FIB is compact and lookup speed is sufficiently fast regardless of the length of matched prefixes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信