主动学习以尽量减少未来流行病的风险

Suprim Nakarmi, K. Santosh
{"title":"主动学习以尽量减少未来流行病的风险","authors":"Suprim Nakarmi, K. Santosh","doi":"10.1109/CAI54212.2023.00145","DOIUrl":null,"url":null,"abstract":"For any future epidemics (e.g., Covid-19), typical deep learning (DL) models are of no use as they require a large amount of data for training. Moreover, data collection (with annotations) typically takes months (and even years) in public healthcare. In such a context, active learning (or human/expert-in-the-loop) is the must, where a machine can learn from the first day with the minimum possible labeled data. In unsupervised learning, we propose to build pre-trained DL models that iteratively learn independently over time, where human/expert intervenes/mentors only when it makes mistakes and for limited data. To validate such a concept, deep features are used to classify data into two clusters (0/1: Covid-19/non-Covid-19) on two different image datasets: Chest X-ray (CXR) and Computed Tomography (CT) scan of sizes 4,714 and 10,000 CTs, respectively. Using pre-trained DL models and unsupervised learning, in our active learning framework, we received the highest AUC of 0.99 and 0.94 on CXR and CT scan datasets, respectively. Our results are comparable with the fully trained (on large data) state-of-the-art DL models.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active Learning to Minimize the Risk from Future Epidemics\",\"authors\":\"Suprim Nakarmi, K. Santosh\",\"doi\":\"10.1109/CAI54212.2023.00145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any future epidemics (e.g., Covid-19), typical deep learning (DL) models are of no use as they require a large amount of data for training. Moreover, data collection (with annotations) typically takes months (and even years) in public healthcare. In such a context, active learning (or human/expert-in-the-loop) is the must, where a machine can learn from the first day with the minimum possible labeled data. In unsupervised learning, we propose to build pre-trained DL models that iteratively learn independently over time, where human/expert intervenes/mentors only when it makes mistakes and for limited data. To validate such a concept, deep features are used to classify data into two clusters (0/1: Covid-19/non-Covid-19) on two different image datasets: Chest X-ray (CXR) and Computed Tomography (CT) scan of sizes 4,714 and 10,000 CTs, respectively. Using pre-trained DL models and unsupervised learning, in our active learning framework, we received the highest AUC of 0.99 and 0.94 on CXR and CT scan datasets, respectively. Our results are comparable with the fully trained (on large data) state-of-the-art DL models.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于任何未来的流行病(例如Covid-19),典型的深度学习(DL)模型都没有用处,因为它们需要大量的数据进行训练。此外,在公共医疗保健中,数据收集(带注释)通常需要数月(甚至数年)。在这种情况下,主动学习(或人/专家在循环中)是必须的,机器可以从第一天开始学习,使用尽可能少的标记数据。在无监督学习中,我们建议建立预训练的深度学习模型,随着时间的推移迭代独立学习,只有当人类/专家犯了错误并且数据有限时才会进行干预/指导。为了验证这一概念,在两个不同的图像数据集上,使用深度特征将数据分为两个簇(0/1:Covid-19/非Covid-19):分别为4,714和10,000 CT的胸部x射线(CXR)和计算机断层扫描(CT)扫描。使用预训练DL模型和无监督学习,在我们的主动学习框架中,我们在CXR和CT扫描数据集上分别获得了0.99和0.94的最高AUC。我们的结果与经过充分训练(在大数据上)的最先进的深度学习模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning to Minimize the Risk from Future Epidemics
For any future epidemics (e.g., Covid-19), typical deep learning (DL) models are of no use as they require a large amount of data for training. Moreover, data collection (with annotations) typically takes months (and even years) in public healthcare. In such a context, active learning (or human/expert-in-the-loop) is the must, where a machine can learn from the first day with the minimum possible labeled data. In unsupervised learning, we propose to build pre-trained DL models that iteratively learn independently over time, where human/expert intervenes/mentors only when it makes mistakes and for limited data. To validate such a concept, deep features are used to classify data into two clusters (0/1: Covid-19/non-Covid-19) on two different image datasets: Chest X-ray (CXR) and Computed Tomography (CT) scan of sizes 4,714 and 10,000 CTs, respectively. Using pre-trained DL models and unsupervised learning, in our active learning framework, we received the highest AUC of 0.99 and 0.94 on CXR and CT scan datasets, respectively. Our results are comparable with the fully trained (on large data) state-of-the-art DL models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信