从表格式网页中学习信息提取模式,无需手动标记

Xiaoying Gao, Mengjie Zhang, Peter M. Andreae
{"title":"从表格式网页中学习信息提取模式,无需手动标记","authors":"Xiaoying Gao, Mengjie Zhang, Peter M. Andreae","doi":"10.1109/WI.2003.1241249","DOIUrl":null,"url":null,"abstract":"We describe a domain independent approach to automatically constructing information extraction patterns for semistructured Web pages. The approach was tested on three corpora containing a series of tabular Web sites from different domains and achieved a success rate of at least 80%. A significant strength of the system is that it can infer extraction patterns from a single training page and does not require any manual labeling of the training page.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning information extraction patterns from tabular Web pages without manual labelling\",\"authors\":\"Xiaoying Gao, Mengjie Zhang, Peter M. Andreae\",\"doi\":\"10.1109/WI.2003.1241249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a domain independent approach to automatically constructing information extraction patterns for semistructured Web pages. The approach was tested on three corpora containing a series of tabular Web sites from different domains and achieved a success rate of at least 80%. A significant strength of the system is that it can infer extraction patterns from a single training page and does not require any manual labeling of the training page.\",\"PeriodicalId\":403574,\"journal\":{\"name\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2003.1241249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们描述了一种独立于领域的方法来自动构建半结构化Web页面的信息提取模式。该方法在包含一系列来自不同领域的表格网站的三个语料库上进行了测试,并取得了至少80%的成功率。该系统的一个重要优点是它可以从单个训练页面推断提取模式,并且不需要对训练页面进行任何手动标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning information extraction patterns from tabular Web pages without manual labelling
We describe a domain independent approach to automatically constructing information extraction patterns for semistructured Web pages. The approach was tested on three corpora containing a series of tabular Web sites from different domains and achieved a success rate of at least 80%. A significant strength of the system is that it can infer extraction patterns from a single training page and does not require any manual labeling of the training page.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信