表面热通量对MHD微极流体向垂直板的驻点流动的影响

A. Adhikari
{"title":"表面热通量对MHD微极流体向垂直板的驻点流动的影响","authors":"A. Adhikari","doi":"10.0000/IJAMC.2014.6.1.628","DOIUrl":null,"url":null,"abstract":"A Magnetohydrodynamics (MHD) mixed convection stagnation point flow of an incompressible micropolar fluid towards a stretching vertical surface with prescribed surface heat flux is studied in this paper. The transformed differential equations are solved numerically by a finite-difference scheme, known as Keller-box method. Numerical results are obtained for the velocity, microrotation and temperature distribution for various parameters. Dual similarity solutions are found to exist for the opposing flow, while for the assisting flow, the solution is unique.","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stagnation point flow of MHD micropolar fluid towards a vertical plate by surface heat flux\",\"authors\":\"A. Adhikari\",\"doi\":\"10.0000/IJAMC.2014.6.1.628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Magnetohydrodynamics (MHD) mixed convection stagnation point flow of an incompressible micropolar fluid towards a stretching vertical surface with prescribed surface heat flux is studied in this paper. The transformed differential equations are solved numerically by a finite-difference scheme, known as Keller-box method. Numerical results are obtained for the velocity, microrotation and temperature distribution for various parameters. Dual similarity solutions are found to exist for the opposing flow, while for the assisting flow, the solution is unique.\",\"PeriodicalId\":173223,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.0000/IJAMC.2014.6.1.628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2014.6.1.628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了不可压缩微极流体在给定表面热流密度条件下向拉伸垂直表面的磁流体动力学混合对流滞止点流动。变换后的微分方程采用有限差分格式,即Keller-box法进行数值求解。得到了不同参数下的速度、微旋度和温度分布的数值结果。发现对反流存在双相似解,而对辅助流存在双相似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stagnation point flow of MHD micropolar fluid towards a vertical plate by surface heat flux
A Magnetohydrodynamics (MHD) mixed convection stagnation point flow of an incompressible micropolar fluid towards a stretching vertical surface with prescribed surface heat flux is studied in this paper. The transformed differential equations are solved numerically by a finite-difference scheme, known as Keller-box method. Numerical results are obtained for the velocity, microrotation and temperature distribution for various parameters. Dual similarity solutions are found to exist for the opposing flow, while for the assisting flow, the solution is unique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信