面向智能海洋的集成传感、通信和计算网络研究综述

Minghui Dai, Yang Li, Peichun Li, Yuan Wu, L. Qian, Bin Lin, Zhou Su
{"title":"面向智能海洋的集成传感、通信和计算网络研究综述","authors":"Minghui Dai, Yang Li, Peichun Li, Yuan Wu, L. Qian, Bin Lin, Zhou Su","doi":"10.3390/jsan11040070","DOIUrl":null,"url":null,"abstract":"The smart ocean has been regarded as an integrated sensing, communication, and computing ecosystem developed for connecting marine objects in surface and underwater environments. The development of the smart ocean is expected to support a variety of marine applications and services such as resource exploration, marine disaster rescuing, and environment monitoring. However, the complex and dynamic marine environments and the limited network resources raise new challenges in marine communication and computing, especially for these computing-intensive and delay-sensitive tasks. Recently, the space–air–ground–sea integrated networks have been envisioned as a promising network framework to enhance the communication and computing performance. In this paper, we conduct a comprehensive survey on the integrated sensing, communication, and computing networks (ISCCNs) for smart oceans based on the collaboration of space–air–ground–sea networks from four domains (i.e., space layer, aerial layer, sea surface layer, and underwater layer), and five aspects (i.e., sensing-related, communication-related, computation-related, security-related, and application-related). Specifically, we provide the key technologies for the ISCCNs in smart oceans, and introduce the state-of-the-art marine sensing, communication, and computing paradigms. The emerging challenges with the potential solutions of the ISCCNs for smart oceans are illustrated to enable the intelligent services. Moreover, the new applications for the ISCCNs in smart oceans are discussed, and potential research directions in smart oceans are provided for future works.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Survey on Integrated Sensing, Communication, and Computing Networks for Smart Oceans\",\"authors\":\"Minghui Dai, Yang Li, Peichun Li, Yuan Wu, L. Qian, Bin Lin, Zhou Su\",\"doi\":\"10.3390/jsan11040070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart ocean has been regarded as an integrated sensing, communication, and computing ecosystem developed for connecting marine objects in surface and underwater environments. The development of the smart ocean is expected to support a variety of marine applications and services such as resource exploration, marine disaster rescuing, and environment monitoring. However, the complex and dynamic marine environments and the limited network resources raise new challenges in marine communication and computing, especially for these computing-intensive and delay-sensitive tasks. Recently, the space–air–ground–sea integrated networks have been envisioned as a promising network framework to enhance the communication and computing performance. In this paper, we conduct a comprehensive survey on the integrated sensing, communication, and computing networks (ISCCNs) for smart oceans based on the collaboration of space–air–ground–sea networks from four domains (i.e., space layer, aerial layer, sea surface layer, and underwater layer), and five aspects (i.e., sensing-related, communication-related, computation-related, security-related, and application-related). Specifically, we provide the key technologies for the ISCCNs in smart oceans, and introduce the state-of-the-art marine sensing, communication, and computing paradigms. The emerging challenges with the potential solutions of the ISCCNs for smart oceans are illustrated to enable the intelligent services. Moreover, the new applications for the ISCCNs in smart oceans are discussed, and potential research directions in smart oceans are provided for future works.\",\"PeriodicalId\":288992,\"journal\":{\"name\":\"J. Sens. Actuator Networks\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Sens. Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan11040070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sens. Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan11040070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

智能海洋被认为是为连接水面和水下环境中的海洋物体而开发的集成传感、通信和计算生态系统。智慧海洋的发展有望支持资源勘探、海洋灾害救援、环境监测等多种海洋应用和服务。然而,复杂动态的海洋环境和有限的网络资源给海洋通信和计算提出了新的挑战,特别是对于这些计算密集型和延迟敏感的任务。近年来,天-空-地-海一体化网络被认为是一种很有前途的提高通信和计算性能的网络框架。本文从空间层、空中层、海面层和水下层四个领域以及传感、通信、计算、安全、应用五个方面,对基于空、空、地、海网络协同的智能海洋传感、通信和计算综合网络(ISCCNs)进行了全面研究。具体而言,我们提供了智能海洋ISCCNs的关键技术,并介绍了最先进的海洋传感、通信和计算范式。说明了智能海洋isccn潜在解决方案的新挑战,以实现智能服务。最后讨论了ISCCNs在智慧海洋中的新应用,并对未来智慧海洋的潜在研究方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey on Integrated Sensing, Communication, and Computing Networks for Smart Oceans
The smart ocean has been regarded as an integrated sensing, communication, and computing ecosystem developed for connecting marine objects in surface and underwater environments. The development of the smart ocean is expected to support a variety of marine applications and services such as resource exploration, marine disaster rescuing, and environment monitoring. However, the complex and dynamic marine environments and the limited network resources raise new challenges in marine communication and computing, especially for these computing-intensive and delay-sensitive tasks. Recently, the space–air–ground–sea integrated networks have been envisioned as a promising network framework to enhance the communication and computing performance. In this paper, we conduct a comprehensive survey on the integrated sensing, communication, and computing networks (ISCCNs) for smart oceans based on the collaboration of space–air–ground–sea networks from four domains (i.e., space layer, aerial layer, sea surface layer, and underwater layer), and five aspects (i.e., sensing-related, communication-related, computation-related, security-related, and application-related). Specifically, we provide the key technologies for the ISCCNs in smart oceans, and introduce the state-of-the-art marine sensing, communication, and computing paradigms. The emerging challenges with the potential solutions of the ISCCNs for smart oceans are illustrated to enable the intelligent services. Moreover, the new applications for the ISCCNs in smart oceans are discussed, and potential research directions in smart oceans are provided for future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信