配置产品的几何造型

S. Nelaturi, V. Shapiro
{"title":"配置产品的几何造型","authors":"S. Nelaturi, V. Shapiro","doi":"10.1145/1629255.1629286","DOIUrl":null,"url":null,"abstract":"The six-dimensional space SE(3) is traditionally associated with the space of configurations of a rigid solid (a subset of Euclidean three-dimensional space E3). But a solid can be also considered to be a set of configurations, and therefore a subset of SE(3). This observation removes the artificial distinction between shapes and their configurations, and allows formulation and solution of a large class of problems in mechanical design and manufacturing. In particular, the configuration product of two subsets of configuration space is the set of all configurations obtained when one of the sets is transformed by all configurations of the other. The usual definitions of various sweeps, Minkowski sum, and other motion related operations are then realized as projections of the configuration product into E3. Similarly, the dual operation of configuration quotient subsumes the more common operations of unsweep and Minkowski difference. We identify the formal properties of these operations that are instrumental in formulating and solving both direct and inverse problems in computer aided design and manufacturing. Finally, we show that all required computations may be implemented using a fast parallel sampling method on a GPU.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Configuration products in geometric modeling\",\"authors\":\"S. Nelaturi, V. Shapiro\",\"doi\":\"10.1145/1629255.1629286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The six-dimensional space SE(3) is traditionally associated with the space of configurations of a rigid solid (a subset of Euclidean three-dimensional space E3). But a solid can be also considered to be a set of configurations, and therefore a subset of SE(3). This observation removes the artificial distinction between shapes and their configurations, and allows formulation and solution of a large class of problems in mechanical design and manufacturing. In particular, the configuration product of two subsets of configuration space is the set of all configurations obtained when one of the sets is transformed by all configurations of the other. The usual definitions of various sweeps, Minkowski sum, and other motion related operations are then realized as projections of the configuration product into E3. Similarly, the dual operation of configuration quotient subsumes the more common operations of unsweep and Minkowski difference. We identify the formal properties of these operations that are instrumental in formulating and solving both direct and inverse problems in computer aided design and manufacturing. Finally, we show that all required computations may be implemented using a fast parallel sampling method on a GPU.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629255.1629286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629255.1629286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

六维空间SE(3)传统上与刚性实体(欧几里德三维空间E3的一个子集)的构型空间相关联。但一个实体也可以被认为是构型的集合,因此是SE(3)的子集。这种观察消除了形状和结构之间的人为区别,并允许在机械设计和制造中提出和解决一大类问题。特别地,构型空间的两个子集的构型积是其中一个子集被另一个子集的所有构型变换后得到的所有构型的集合。各种扫描、闵可夫斯基和和其他运动相关操作的通常定义随后被实现为配置积到E3的投影。同样,构商的对偶运算包含了更常见的反扫和闵可夫斯基差运算。我们确定了这些操作的形式属性,这些操作有助于制定和解决计算机辅助设计和制造中的直接和反问题。最后,我们证明了所有需要的计算都可以在GPU上使用快速并行采样方法来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Configuration products in geometric modeling
The six-dimensional space SE(3) is traditionally associated with the space of configurations of a rigid solid (a subset of Euclidean three-dimensional space E3). But a solid can be also considered to be a set of configurations, and therefore a subset of SE(3). This observation removes the artificial distinction between shapes and their configurations, and allows formulation and solution of a large class of problems in mechanical design and manufacturing. In particular, the configuration product of two subsets of configuration space is the set of all configurations obtained when one of the sets is transformed by all configurations of the other. The usual definitions of various sweeps, Minkowski sum, and other motion related operations are then realized as projections of the configuration product into E3. Similarly, the dual operation of configuration quotient subsumes the more common operations of unsweep and Minkowski difference. We identify the formal properties of these operations that are instrumental in formulating and solving both direct and inverse problems in computer aided design and manufacturing. Finally, we show that all required computations may be implemented using a fast parallel sampling method on a GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信