基于高斯混合模型的电动汽车充电负荷不确定性对系统性能的影响

Bo Chen, Y. Chen
{"title":"基于高斯混合模型的电动汽车充电负荷不确定性对系统性能的影响","authors":"Bo Chen, Y. Chen","doi":"10.1109/NAPS52732.2021.9654268","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to assess the impact of the uncertainty in electric vehicle (EV) charging loads on system static performance reflected through the resulting uncertainty in system states, i.e., bus voltage magnitude and phase-angles. Historical EV charging data is fit to a Gaussian mixtures model (GMM), which can capture generic probability distributions. The GMM is then propagated through a linearized power flow model to yield a probabilistic characterization of the voltage magnitudes and phase-angles. As a direct consequence of the linear model approximation, the resulting characterization is also a GMM, the parameters of which can be computed in closed form. Numerical simulations involving the IEEE 33-bus distribution test system demonstrate the effectiveness of the proposed method to assess uncertainty in system states.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"70 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of EV Charging Load Uncertainty as Gaussian Mixtures Model on System Performance\",\"authors\":\"Bo Chen, Y. Chen\",\"doi\":\"10.1109/NAPS52732.2021.9654268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to assess the impact of the uncertainty in electric vehicle (EV) charging loads on system static performance reflected through the resulting uncertainty in system states, i.e., bus voltage magnitude and phase-angles. Historical EV charging data is fit to a Gaussian mixtures model (GMM), which can capture generic probability distributions. The GMM is then propagated through a linearized power flow model to yield a probabilistic characterization of the voltage magnitudes and phase-angles. As a direct consequence of the linear model approximation, the resulting characterization is also a GMM, the parameters of which can be computed in closed form. Numerical simulations involving the IEEE 33-bus distribution test system demonstrate the effectiveness of the proposed method to assess uncertainty in system states.\",\"PeriodicalId\":123077,\"journal\":{\"name\":\"2021 North American Power Symposium (NAPS)\",\"volume\":\"70 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS52732.2021.9654268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种评估电动汽车充电负荷不确定性对系统静态性能影响的方法,该影响通过系统状态(即母线电压幅值和相位角)的不确定性来体现。将历史电动汽车充电数据拟合到高斯混合模型(GMM)中,该模型可以捕获一般的概率分布。然后通过线性化的功率流模型传播GMM,以产生电压幅度和相位角的概率特性。作为线性模型近似的直接结果,所得到的表征也是一个GMM,其参数可以以封闭形式计算。针对IEEE 33总线配电测试系统的数值仿真验证了该方法在评估系统状态不确定性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of EV Charging Load Uncertainty as Gaussian Mixtures Model on System Performance
This paper proposes a method to assess the impact of the uncertainty in electric vehicle (EV) charging loads on system static performance reflected through the resulting uncertainty in system states, i.e., bus voltage magnitude and phase-angles. Historical EV charging data is fit to a Gaussian mixtures model (GMM), which can capture generic probability distributions. The GMM is then propagated through a linearized power flow model to yield a probabilistic characterization of the voltage magnitudes and phase-angles. As a direct consequence of the linear model approximation, the resulting characterization is also a GMM, the parameters of which can be computed in closed form. Numerical simulations involving the IEEE 33-bus distribution test system demonstrate the effectiveness of the proposed method to assess uncertainty in system states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信