多元幂级数乘法

É. Schost
{"title":"多元幂级数乘法","authors":"É. Schost","doi":"10.1145/1073884.1073925","DOIUrl":null,"url":null,"abstract":"We study the multiplication of multivariate power series. We show that over large enough fields, the bilinear complexity of the product modulo a monomial ideal M is bounded by the product of the regularity of M by the degree of M. In some special cases, such as partial degree truncation, this estimate carries over to total complexity. This leads to complexity improvements for some basic algorithms with algebraic numbers, and some polynomial system solving algorithms.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Multivariate power series multiplication\",\"authors\":\"É. Schost\",\"doi\":\"10.1145/1073884.1073925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the multiplication of multivariate power series. We show that over large enough fields, the bilinear complexity of the product modulo a monomial ideal M is bounded by the product of the regularity of M by the degree of M. In some special cases, such as partial degree truncation, this estimate carries over to total complexity. This leads to complexity improvements for some basic algorithms with algebraic numbers, and some polynomial system solving algorithms.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们研究多元幂级数的乘法。我们证明了在足够大的域上,乘积模单项式理想M的双线性复杂度由M的正则性与M的阶积所限定。在某些特殊情况下,如部分阶截断,这个估计延续到总复杂度。这使得一些基本的代数数算法和一些多项式系统求解算法的复杂度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate power series multiplication
We study the multiplication of multivariate power series. We show that over large enough fields, the bilinear complexity of the product modulo a monomial ideal M is bounded by the product of the regularity of M by the degree of M. In some special cases, such as partial degree truncation, this estimate carries over to total complexity. This leads to complexity improvements for some basic algorithms with algebraic numbers, and some polynomial system solving algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信